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1 INTRODUCTION

There is no universal definition of turbulence agreed to by the
entire scientific community. The reasons for this aremultiple.
Firstly, there is no comprehensive theory of turbulence. It
is recognized as one of the outstanding problems in physics
despite focused efforts for over 100 years. Secondly, because
turbulence is important in many disciplines, different aspects
of turbulence are of interest for different specialists. As
such, the question “what is really important” with regard to
turbulence is answered differently by engineers, oceanogra-
phers, atmospheric scientists, plasma physicists, astrophysi-
cists, and so on.
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A good starting point is this relatively neutral defini-
tion given in the Encyclopedia of Nonlinear Science (Scott,
2005):

Turbulence is a state of a nonlinear physical system that has
energy distribution over many degrees of freedom strongly
deviated from equilibrium. Turbulence is irregular both in
time and in space. Turbulence can be maintained by some
external influence or it can decay on the way to relaxation to
equilibrium. The term first appeared in fluid mechanics and
was later generalized to include far-from-equilibrium states in
solids and plasmas.

A classical example, which illustrates the onset of turbu-
lence, was described in 1883 by Reynolds (1883) who
studied a flow in a narrow circular pipe. By visualizing the
water flow using thin lines of a dye, Reynolds found that
at low velocities the dye streaks represented straight lines,
while at higher velocities the onset of distinct curls marked
a transition to a turbulent motion. This transition occurs
at sufficiently large values of the Reynolds number Re≡V
d/𝜈 > 2× 103. Here, V is the mean flow velocity, d the pipe
diameter, and 𝜈 the kinematic viscosity (𝜈 = 10−6 m2/s in
water). Figure 1 illustrates a flow generated by a fluidmoving
relative to a regular grid.
In general, if an obstacle of size L is placed in a fluid of

kinematic viscosity 𝜈 that is moving with velocity V, a turbu-
lent wake emerges above some critical Reynolds number
Re≡VL/𝜈. If the viscosity is not too high, at large Re, pertur-
bations produced at scale L due to the nonlinear effects
generate smaller and smaller scales until viscous dissipation
terminates the process at a scale much smaller than L. This
is the key process in turbulence: the generation of a wide
range of scales in which there is neither forcing nor dissi-
pation. This range is referred to as the inertial interval. The
kinetic energy is transferred from the scale L, at which it is
injected into the flow, to much smaller scales where viscous
dissipation dominates over the nonlinearity. The process of
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Figure 1. Fluid flowing through a grid (a) at low speed and
(b) at high speed. The color-smoke pattern illustrates one of
the most important roles played by turbulence, the mixing. The
plots were generated using Wind Tunnel Pro application on iPad
(http://windtunnelapp.com/Wind_tunnel_app/HOME.html), which
simulates incompressible and homogeneous fluid motion with the
Navier–Stokes equations.

the energy transfer from large to small scales is known as the
direct energy cascade.
In the ocean, turbulence promotes the transfer of

momentum and heat at the rates far greater than it would
in laminar flows. It disperses particles and living organisms
on the ocean surface and stirs and spreads the chemicals
dissolved in the seawater. In other words, turbulence largely
controls both horizontal and vertical transport in the ocean
and in the atmosphere, and it is also responsible for stirring
and mixing.
The eddying motions, intrinsic to turbulence, transfer

momentum across fixed surfaces. The rate of such transfer
is given by the time-averaged product of the transferred
quantity (e.g., horizontal momentum) and the component of
the turbulent velocity normal to the surface (e.g., vertical
velocity fluctuations). If we denote the horizontal and
vertical velocity fluctuations by Ṽx,y and Ṽz, respectively,
then the vertical flux of the horizontal momentum across
a horizontal surface is given by the Reynolds stress of the
upper fluid layer on the lower:

𝜏 = −⟨𝜌Ṽx,yṼz⟩ ≈ −𝜌⟨Ṽx,yṼz⟩ (1)

where 𝜌 is the fluid density. It is clear that if the x, y, and
z velocity fluctuations are not correlated, Reynolds stress is
zero. The transfer of momentum can be related to the mean
velocity gradient dV∕dz through a so-called eddy viscosity
coefficient, K, as

⟨𝜌Ṽx,yṼz⟩ = KdV∕dz (2)

2 INCOMPRESSIBLE 3D TURBULENCE

Incompressible fluid flow is described by the Navier–Stokes
equation

dV
dt

= 𝜕V
𝜕t

+ (V ⋅ ∇)V = −1
𝜌
∇p + 𝜈∇2V (3)

(where p is the pressure) and the continuity equation,

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌V) = 0 (4)

which for the incompressible flows gives

∇ ⋅ V = 0 (5)

A system of equations 3 and 5 constitutes Navier–Stokes
equations of incompressible fluid.
At large Reynolds numbers the nonlinearity is much

larger than the viscous dissipation, |(∇ ⋅V)V|≫𝜈∇2V.
This is true for large scales. However, since the nonlin-
earity increases linearly with the wave number k= 2𝜋/l,
|(∇ ⋅V)V|∼ kV2, while the viscous dissipation is propor-
tional to k2, 𝜈∇2V∼ 𝜈k2, at large k (small scales) the
dissipation eventually takes over and terminates the direct
energy cascade.
The idea of the energy flow from larger to smaller scales

suggested by L.F. Richardson (1922) led to the concept of
the inertial interval and of the energy cascade as a process,
which spreads energy from large scales where it cannot be
dissipated toward small scales where it can be dissipated. In
the inertial interval of scales l there are no sources or sinks of
energy, such that the energy flux in the wave number space
stays constant. If energy is injected into a flow at a large
scale L, it will then be passed on to smaller scales l until
ultimately it is dissipated at some dissipation scale 𝜂 whose
value depends on viscosity 𝜈. This flux of energy should
naturally be equal to the energy dissipation rate 𝜀.
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3 KOLMOGOROV THEORY OF
TURBULENCE

In 1941, A.N. Kolmogorov in three short papers formulated
(Friendlander and Topper, 1961) what is known now as
Kolmogorov theory of turbulence, or K-41.
To summarize it, we first need to introduce velocity struc-

ture functions of the order n, which are defined as:

Sn(r, t) = ⟨[(V(r, t) − V(0, t)) ⋅ r∕r]n⟩ = ⟨(𝛿VL)n⟩ (6)

Here, the expression in square brackets is the increment (𝛿VL)
across the distance r in the flow of the fluctuating velocity
component parallel to r, and the angular brackets denote
ensemble averaging over all such pairs in the flow. See also
Figure 2. An nth-order velocity structure function Sn(r, t) is
often referred to as the nth velocity moment.
The relationship between S2 and S3 is known as the

Karman–Howarth relation, and it is given by (Landau and
Lifshits, 1987)

𝜕S2
𝜕t

= − 1
3r4

𝜕

𝜕r
(r4S3) +

4𝜀
3

+ 2𝜈
r4

𝜕

𝜕r

(
r4
𝜕S2
𝜕r

)
(7)

Here again, 𝜀= 𝜈(∇V)2 is the mean energy dissipation
rate. From this relation, in steady state (𝜕S2/𝜕t= 0),
one can derive for the third-order structure function:
S3(r)=− 4𝜀r/5+ 6𝜈(dS2(r)/dr). Kolmogorov considered a
limit of vanishing viscosity 𝜈 and assumed that 𝜀 is nonzero
to obtain the so-called 4/5 law:

S3(r) = −4
5
𝜀r (8)

The 4/5 law is obtained as a direct consequence of the
Navier–Stokes equations. This law relates the third-order
structure function of velocity fluctuations and the energy flux
through inertial interval. If the range of scales r is larger than
the Kolmogorov dissipation scale 𝜂 = 𝜈3/4𝜀1/4 and smaller

Vt1
V1

VL1

VL2

Vt2
V21

2

Figure 2. Computation of the velocity increments for structure
functions estimations.
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Figure 3. Kinetic energy spectrum of three-dimensional turbu-
lence. Dotted line corresponds to the highest viscosity, while dashed
line corresponds to lower viscosity.

than the energy injection scale L, the flux is constant for all r
and does not depend on viscosity.
For the second-order structure function dimensional anal-

ysis gives:
S2(r) ∝ C2⟨𝜀⟩2∕3r2∕3 (9)

This expression (sometimes also called a 2/3 law) can be
rewritten in Fourier space to give a famous Kolmogorov
spectrum of kinetic energy (Figure 3):

E(k) = CK⟨𝜀⟩2∕3k−5∕3 (10)

where k is the wave number corresponding to a scale l, and
Ck is the Kolmogorov constant. In 3D turbulence, CK ≈ 0.5
(Sreenivasan, 1995).

4 KOLMOGOROV PHENOMENOLOGY
OF TURBULENCE

The results of the K-41 theory formed a framework in which
relations between turbulence parameters can be established
on the basis of exact results (such as 4/5 law), empir-
ical laws (e.g., 2/3 law), and dimensional considerations.
Such phenomenological approach seems very useful in many
applications where qualitative relation between flow statis-
tical variables need to be established.
The main parameters in the turbulence phenomenology

are: the scale l, the velocity associated with this scale, Vl,
the r.m.s. velocity fluctuation, VL, and the eddy turnover time
associated with the scale l, 𝜏 l = l/VL. The eddy turnover time
reflects the time of transfer of excitation in incompressible
fluid. It can be used to estimate the energy flux from scale l
to smaller scales. It is defined as the amount of kinetic energy
per mass, V2

l , associated with the eddy of scale l, transferred
to smaller scales in the typical time 𝜏 l: Πl = V2

l ∕𝜏l = V3
l ∕l.
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This flux in the inertial interval (no energy injection, nor
dissipation) equals to the energy dissipation rate 𝜀: Πl = 𝜀.
From this, it follows that the velocity of the scale l is the
scale invariant of exponent h= 1/3:

Vl = 𝜀1∕3l1∕3 (11)

This gives another expression for the eddy turnover time:

𝜏l = 𝜀−1∕3l2∕3 (12)

The latter expression can be used in practical applica-
tions to distinguish between coherent vortices (with long life
time), often present in turbulent flows and turbulence eddies
constituting Kolmogorov spectrum of kinetic energy.
Near the top of the inertial interval, where l∼ L,

Equation 11 gives VL = 𝜀1/3L1/3, and

𝜀 = V3
L∕L (13)

At the end of the inertial interval, where viscosity becomes
important, the characteristic scales can be obtained as follows
(Frisch, 1995). The typical time to attenuate excitation at the
scale l by viscous diffusion is 𝜏dl = l2∕𝜈. This diffusive time
decreases faster with the decrease in l than the eddy turnover
time (Equation 12). It means that at any small viscosity there
will be sufficiently small scale 𝜂, at which 𝜏dl will become
shorter than 𝜏 l:

𝜂 =
(
𝜈3

𝜀

)1∕4

(14)

which is the Kolmogorov dissipation scale discussed above.
Using Equations 13 and 14, one can arrive at a very impor-

tant relationship between the forcing scale L, Kolmogorov
dissipation scale 𝜂, and the Reynolds number, R= (VLL)/𝜈:

L
𝜂
∼

(
𝜈3

V3
LL

3

)−1∕4

∼ R3∕4 (15)

The ratio L/𝜂, which characterizes the extent of the iner-
tial interval, grows as R3/4. This allows estimating the size
of the computational grid in numerical simulations of turbu-
lence. In three-dimensional (3D) model, the minimal number
of grid points should be N∼ (L/𝜂)3. The relation 15 suggests
that the size of the computational grid grows asN∼R9/4. This
highlights the difficulty of achieving high Reynolds numbers
in direct numerical simulations (DNS) of turbulence. Some-
times this estimate (R9/4) is used as a measure of the number
of degrees of freedom of turbulence.

5 NUMERICAL SIMULATION OF
TURBULENCE

Though the Navier–Stokes equations 3 and 5 are the deter-
ministic ones and allow, in principle, computing any turbu-
lent flow given the initial and boundary conditions, a very
large number of degrees of freedom (see above) makes this
task impossible in many practical situations. As mentioned
before, turbulence is characterized by a broad range of scales.
In 3D turbulence, the kinetic energy is contained in scales
that are much larger than the energy-dissipating scales.
DNS. In this computational method all scales are taken

into account, including the smallest scales where the kinetic
energy is dissipated. Since the ratio of the integral scale and
the dissipation scale is proportional to R3/4, the number of
grid points needed to simulate a cube whose size equals
to the integral scale is Ng ∼R9/4

. For values of R= 108,
typical, for example, for turbulent clouds, one would need
a computational grid of 1018 points! In the boundary layer
of a large aircraft R∼ 6× 105, which gives N∼ 1013. These
examples illustrate that most of practically important prob-
lems in turbulence cannot be addressed in DNS, at least
in the near future. This highlights the role of alternative
approaches to numerical simulations of turbulence as well
as the importance of laboratory experiments and new theo-
retical approaches in turbulence studies.
Large-eddy simulations (LES). To reduce the grid size

needed for DNS, another method of turbulence simulation,
LES, is often used in which the equations of motion are space
averaged. To implement this space averaging, the variables
are filtered,

Vi = ∫ Q(x − x′)Vi(x′)dx′ (16)

where Q(x) is the smoothing kernel. This kernel can be, for
example, the box filter,

Q(x) = 1∕𝜎, if |x| < 𝜎∕2
0 , if |x| > 𝜎∕2

or the Gaussian filter

Q(x) = 1

𝜎
√
2π

e−x
2∕2𝜎2

The main idea of the method is to avoid computing
the dissipation scales and also the scales in the inertial
interval, which are assumed isotropic and equilibrium. This
is possible if the energy transfer is known. The large scales
are computed directly, while other scales are substituted
by a subgrid model. Space-averaged variables are local
averages, somewhat similar to the representation of the
turbulent velocity as a sum of the mean and the fluctuation:
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Vi(x, t) = Vi(x) + Ṽi(x, t). In Fourier space, smoothing filters
damp higher wave numbers, while lower ones remain almost
unaffected. Effectively, filtering separates large eddies,
containing the energy from the Reynolds stresses, and
subgrid components containing the dissipation.
Applying filtering of variables to the incompressible

Navier–Stokes equations gives

𝜕Vi

𝜕t
+
𝜕(ViVj)
𝜕xj

= − 1
𝜌

𝜕p∗

𝜕xi
+ 𝜕

𝜕xj

(
𝜈
𝜕Vi

𝜕xj
+ 𝜏 ij

)
𝜕Vi

𝜕xj
= 0 (17)

where the Reynolds stress 𝜏 ij = Tij − (Tkk∕3)𝛿ij, Tij =
ViVj − ViVj, and p∗ = p − 𝜌Tkk∕3 is a modified pressure.
The subgrid stresses can be assumed to be proportional to
the filtered rate-of-strain tensor

𝜏 ij = 2𝜈𝜀Sij (18)

where 𝜈𝜀 is the subgrid eddy viscosity and Sij the
rate-of-strain tensor computed with the filtered velocity.
Reynolds-averaged Navier–Stokes simulations (RANS).

This method for computing turbulent flows requires solving
directly the Reynolds-averaged Navier–Stokes equations:

𝜕Vi

𝜕t
+
𝜕(ViVj)
𝜕xj

= −1
𝜌

𝜕p

𝜕xi
+ 𝜕

𝜕xj

(
𝜈
𝜕Vi

𝜕xj
− ⟨ṼiṼj⟩

)
𝜕Vi

𝜕xj
= 0 (19)

The main difficulty intrinsic to this method is the presence
of unknown Reynolds stresses ⟨ṼiṼj⟩, which requires finding
an appropriate closure.

6 TWO-DIMENSIONAL TURBULENCE

If the fluid depth is small, large-scale motions can be approx-
imated as two dimensional (2D). For example, intermediate
range motions in the atmosphere and in the ocean are larger
than their corresponding depths. In this section, we will
discuss how realistic such an assumption can be in laboratory
and natural flows. We will show that, surprisingly, properties
of 2D turbulence are found in a variety of turbulent flows,
which cannot a priori be thought as 2D. The Navier–Stokes
equations for an incompressible 2D flow, whose velocity
field is V(r, t)= [Vx(x, y, t),Vy(x, y, t)], are given as

𝜕V
𝜕t

+ V ⋅ ∇V = − 1
𝝆
∇p + 𝜈∇2V − 𝛼V + fV (20)

where fV is a forcing and 𝛼 characterizes linear fric-
tional damping. This can be rewritten for the vorticity
𝜔=∇×V=−∇2𝜓 , which in a 2D flow is a scalar, as

d𝜔
dt

= 𝜈∇2𝜔 − 𝛼𝜔 + f (21)

where d𝜔/dt= 𝜕𝜔/𝜕t+V ⋅∇𝜔 and f=∇× fV. If viscosity is
zero, 𝜈 = 0, vorticity is conserved in the absence of forcing
and dissipation, d𝜔/dt= 0. In this case, the flow has two
conserved quantities, or two quadratic invariants, the kinetic
energy E= (1/2)⟨V2⟩ and enstrophy, or squared vorticity,
Ω= (1/2)⟨𝜔2⟩. The existence of these two invariants, as was
suggested by Kraichnan (1967), leads to the existence of
two turbulent cascades in 2D: the inverse energy cascade
and the direct enstrophy cascade. In other words, in contrast
to the direct energy cascade in three dimensions, 2D turbu-
lence supports spectral energy transfer from smaller to larger
scales. Kolmogorov’s assumption that the energy spectrum
E(k) depends only on the wave number k and on the energy
dissipation rate 𝜀 leads to the same spectrum in the energy
cascade range as in 3D turbulence, Figure 4:

E(k) = C𝜀2∕3k−5∕3, k < kf (22)

where E(k) is defined such that the mean kinetic energy per
unit mass is given by

E = ∫
∞

0
E(k)dk (23)

andC≈ 6 is a constant. A similar assumption that the squared
vorticity spectrum depends only on the enstrophy dissipation
rates 𝜀𝜔 and k leads to the spectrum shape in the direct
enstrophy cascade range given by

E(k) = C′𝜀𝜔
2∕3k−3, k > kf (24)

The exact relation for the third-order structure function
holds in 2D turbulence, giving an equivalent of Equation 8
of the 3D Kolmogorov 4/5 law (Yakhot, 1999):

S3L(r) = ⟨[𝛿VL]3⟩ = 3
2
𝜀r (25)

Note that in 2D turbulence, the third-order structure
function is positive, indicating the direction of the energy
flux opposite to that in 3D, that is, from smaller to larger
scales.

6.1 Spectral condensation in 2D turbulence

The existence of the inverse energy cascade in 2D turbu-
lence gives it an amazing ability to self-organize. This can
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be observed as the transition from highly irregular chaotic
motion dominated by eddies of different scales to the flow
dominated by one or several vortices coherent across the
bounded domain. This phenomenon, referred to as spectral
condensation of energy, was predicted by Kraichnan (1967),
who likened this phenomenon to a Bose–Einstein condensa-
tion in quantum gases.
In the presence of the large-scale or uniform dissipa-

tion (e.g., bottom drag), energy delivered to large scales
will be dissipated. The maximum of the spectrum in this
case will stabilize at some dissipation wave number given
by k𝛼 ≈ 2𝜋(𝛼3/𝜀)1/2, see Figure 4. If however the flow is
bounded, such that the box size is L< 2𝜋/k𝛼 , energy will start
to accumulate at the scale comparable to L until the energy
input through the inverse energy cascade is balanced by the
dissipation. A large coherent vortex will develop and will
exist in steady state, as illustrated in Figure 5. The kinetic
energy spectrum in the presence of a condensate becomes
steep, E(k)∼ k− 3; however, when the coherent vortex is
subtracted out, the spectrum reveals underlying turbulence
with E(k)∼ k− 5/3 (Xia, Shats, and Falkovich, 2009).

6.2 2D turbulence in 3D flows

From the point of view of the applicability of the 2D turbu-
lence theory to real flows in laboratory and in nature, the
question is: can any real flows be 2D? The formal answer
to this question is “no” since physical fluid systems are
intrinsically 3D. However, if we recall that the main differ-
ence between 2D and 3D turbulence is the direction of
the energy transfer in the inertial range, the question may
be asked differently: “Can laboratory and natural turbulent
flows support the inverse energy cascade?”

k

E
 (

k)

k−5/3

kf

k−3

kα

Inertial interval

Inverse
energy

cascade

Direct
enstrophy
cascade

Figure 4. Kinetic energy spectrum of two-dimensional turbulence.
kf is the forcing scale wave number, while k𝛼 characterizes
large-scale dissipation.

(a) (b)

Figure 5. Spectral condensation of 2D turbulence in laboratory
experiments (Xia, Shats, and Falkovich, 2009) is observed as the
aggregation of turbulent eddies of different scales (a) into a coherent
vortex (b), which dominates the flow and is sustained by the inverse
energy cascade.

Recent studies in a surprisingly broad range of turbulent
flows answer this question positively. Early laboratory exper-
iments aiming to test main predictions of the 2D turbulence
theory were performed by forcing turbulence electromagnet-
ically in thin layers of electrolytes (Sommeria, 1986; Paret
and Tabeling, 1997) and using falling soap films (Couder,
Chomaz, and Rabaud, 1989; Gharib and Derango, 1989).
The main idea was to constrain motion in one spatial dimen-
sion (depth). Later, it was found that in thick fluid layers
(depth larger that the turbulence forcing scale) the planarity
of flows could be imposed on smaller scales by large-scale
coherent flows (Xia et al., 2011). Such large-scale flows
can either be self-generated by turbulence in the process of
spectral condensation, or they can be externally imposed on
turbulence.
Such a scenario has been later confirmed in the energy

dynamics of the hurricane boundary layer (Byrne and
Zhang, 2013). The hurricane, representing a large-scale
coherent vortex, imposes two dimensionality onto boundary
layer turbulence turning it from 3D into 2D. The direction
of the energy transfer changes with the height from the
direct cascade (from large to small scales) in 3D to the
inverse energy cascade (from small to large scales) in 2D.
As a result, the large vortex may gain energy from small
scales.
A possibility of the inverse energy cascade in 3D isotropic

turbulence has been studied in numerical simulations of the
Navier–Stokes equations (Biferale, Musacchio, and Toschi,
2012) where it has been shown that the inverse turbulent
spectral transfer may be due to the interactions between
velocity components carrying a well-defined helicity. The
inverse energy cascade thus is not necessarily connected to a
two-dimensionalization of the flow.
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Another example of the 2D turbulence was recently found
in the motion of the floaters on the surface of liquids
perturbed by the Faraday waves (von Kameke et al., 2011;
Francois et al., 2013). Though the floaters motion is 3D, the
statistics of their horizontal motion is identical to those of
the 2D turbulence, including the observation of the inverse
energy cascade and of the direct enstrophy cascade in the
kinetic energy spectra, Equations 23 and 24, the observation
of the linear positive third-order structure functions of the
velocity increments, Equation 25, and spectral condensation
of energy.

7 LAGRANGIAN STATISTICS OF
TURBULENCE

7.1 Lagrangian versus Eulerian description

The Lagrangian description of fluid flows, in which the
observer follows the fluid particles wherever they move, is
physically more natural than the Eulerian one in which the
observers are at fixed spatial positions, since it is related
to the motion of fluid elements, or matter. Though in the
past technical difficulties hindered the use of the Lagrangian
approach in turbulent flows, recent progress in computa-
tional power and in the laboratory imaging tools led to
a focused effort in studying turbulence from Lagrangian
perspective.
In the Eulerian frame, the flow characteristics are functions

of coordinates X and time t. The flow velocity is given by a
function uE(X, t) measured at a position X at time t.
In the Lagrangian description, fluid particles’ positions are

followed in time. If we define a position of a particle at
some initial time t0 as X0, the flow is described by a function
X(X0, t), giving the position of the particle at time t.
The two descriptions are related as follows:

𝜕X(t|X0, t0)
𝜕t

= uL(t|X0, t0)

uL(t|X0, t0) = uE((X(t)|X0, t0), t) (26)

where indices “L” and “E” refer to the Lagrangian and
Eulerian quantities, respectively.
The relation between Eulerian and Lagrangian fields is a

difficult (if solvable) mathematical problem. The main diffi-
culty is that the Lagrangian field X(X0, t) is a complicated
functional of the Eulerian velocity field uE(X, t). If the Eule-
rian velocity field is known or given, Equation 26 serves
for determination of a trajectory of a fluid particle with the
initial position X0. This equation is nonlinear even for very
simple fluid flows and is generically nonintegrable. Even
if the Eulerian velocity uE(X, t) is regular and laminar, the

Lagrangian velocity uE(X(t|X0, t0), t) can be chaotic because
the trajectory is chaotic. Thus, a flow can be laminar in the
Eulerian sense, but chaotic or turbulent in the Lagrangian
sense (Tsinober, 2001).
Lagrangian measurements can be obtained from numer-

ical simulations, laboratory experiments, and from measure-
ments in the atmosphere and in the ocean.
In numerical simulations, a well-resolved instantaneous

velocity field evolving according to the Navier–Stokes
equations must be available. The interpolation scheme needs
to be reasonably efficient when large numbers of particles
are tracked. Finally, a sufficient number of particles with
high degree of statistical independence should be tracked
and included in the ensemble averages.
In experiments, the essential task is to obtain records

of the particle positions over time using optical or other
particle-detection techniques. Then Equation 26 can be used
in reverse to obtain the particle velocity. The main difficulty
here is to locate a particle while maintaining its identity
for a significant period of time. Recent advances in exper-
imental tools and techniques allow obtaining high-quality
Lagrangian data in laboratory (Toschi and Bodenschatz,
2009). Alternatively, particle trajectories can be simulated
from the measured velocity fields in the flow.

7.2 Particle motion in turbulent fluids

Classical descriptions of Lagrangian dynamics involve statis-
tical analysis of trajectories of individual particles (N= 1)
following the work of Taylor (1921) and of the relative
displacement of two trajectories (N= 2) following the work
of Richardson (1926). Later, studies of the particle disper-
sion in turbulence extended toward multiparticle dynamics,
which are of interest from the point of view of the evolu-
tion of fluid patches (groups of N fluid elements with N> 2)
(Falkovich, Gawedzki, and Vergassola, 2001; Xu, Ouellette,
and Bodenschatz, 2008).

7.3 Single-particle dispersion

The most basic property of Lagrangian trajectories is a
single-particle dispersion, or mean squared displacement⟨𝛿r2⟩= ⟨|r(t)− r(t0)|

2⟩ of a particle moving along the trajec-
tory r(t) from its initial position r(t0) over time interval
𝛿t= (t− t0), Figure 6. It can be shown that

𝜕

𝜕t
⟨𝛿r2⟩ = 2u(t) ⋅ ∫

t

t0

u(s)ds (27)
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Figure 6. Particle trajectories in turbulence: (a) particle displacement from its initial position in the flow and (b) tracked particle trajectories
in the wave-driven 2D turbulence.

By performing the ensemble averaging and assuming
velocities u statistically stationary, one can obtain an
equation for the second moment of the single-particle
displacement:

𝜕

𝜕t
⟨𝛿r2⟩ = 2∫

t

t0

⟨u(0) ⋅ u(s)⟩ds (28)

The behavior of ⟨(𝛿r)2⟩ depends on the range of temporal
correlation ⟨u(0) ⋅ u(t)⟩ of the Lagrangian velocity u(t). The
Lagrangian velocity correlation time is defined as

TL = 1⟨u2⟩∫ ∞

t0

⟨u(0) ⋅ u(t)⟩dt = ∫
∞

t0

dt
𝜌(t)⟨u2⟩ (29)

Here, 𝜌(t) is the Lagrangian velocity autocorrelation func-
tion. The value of TL provides a measure of the Lagrangian
velocity memory. For times t≪ TL, the two-time correlation
function in Equation 28 approximately equals ⟨u2⟩ and the
particle transport is ballistic (displacement linearly propor-
tional to time). At longer times, t≫ TL, when the Lagrangian
correlation time is finite, diffusive regime arises, such that
the mean displacement scales a square root of time (Taylor,
1921):

⟨(𝛿r)2⟩ = ⟨u2⟩t2 t ≪ TL⟨(𝛿r)2⟩ = 2⟨u2⟩TLt t ≫ TL (30)

The particle displacements over time segments spaced by
distances much larger than TL are almost independent. At
long times, the displacement 𝛿r behaves as a sum of many
independent variables and falls into a class of stationary
processes governed by the Central Limit Theorem. In other
words, the displacement for t≫ TL becomes similar to
a Brownian motion. Taylor’s single-particle dispersion,
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Figure 7. Experimental confirmation of the Taylor’s single-particle
dispersion, Equation 30, in two-dimensional turbulence. (Repro-
duced with permission from Xia et al., 2013. © Nature publishing,
2013.)

Equation 30, has been confirmed in laboratory experiments
in 2D turbulence in both ballistic and diffusive regimes (Xia
et al., 2013; Figure 7).
The timescale TL corresponds to a distance LL = ⟨u⟩TL,

the Lagrangian eddy length scale. By analogy with Fickian
diffusion, ⟨(𝛿r)2⟩ can be related to an effective eddy diffu-
sivity 𝜅H = 1

2
d
dt
⟨(𝛿r)2⟩, which asymptotes to 𝜅H = ⟨u⟩LL or

𝜅H = ⟨u2⟩TL in the random walk limit t≫ TL.
To estimate the diffusion coefficient 𝜅H, one needs to

compute or to measure the Lagrangian velocity autocor-
relation function 𝜌(t). However, 𝜌(t) and TL cannot be
theoretically predicted. In some cases it is possible to rely
on the empirically found relationships, such as the one
recently reported for laboratory 2D turbulence (Xia et al.,
2013). If 2D turbulence is fully developed, and the velocity
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autocorrelation function is a decaying exponential in time,
𝜌(t)∼ exp{−t/TL}, the mean-squared displacement in 2D
turbulence is determined by the turbulence forcing scale Lf as

⟨𝛿r2⟩ = L2f
TL

t, t ≫ TL (31)

7.4 Particle pair dispersion

Along with single-particle dispersion, the dynamics of a
pair of initially adjacent particles in a flow is of interest in
such problems as spreading of pollutants. Relative dispersion
in turbulence was considered by Richardson (1926), who,
based on the experimental data in the atmosphere, obtained a
celebrated Richardson law (1926) for the separation distance
R(t) between two particles with time as

⟨[R(t)]2⟩ ∼ t3 (32)

By applying Kolmogorov’s scaling theory, Obukhov
(1941) postulated that in the inertial range of turbulence, the
pair dispersion should grow as ⟨[R(t)]2⟩∼ g𝜀t3 g, where g
is a universal constant. Batchelor (1952) refined this work,
predicting that the mean-square separation should grow as⟨[R(t)]2⟩ ∼ 3

11
C2(𝜀r0)2∕3t2 for times shorter than a charac-

teristic timescale t0, which depends on the initial separation
of the pair r0.
The pair dispersion between two fluid particles with trajec-

tories Rn(t)=R(t, rn) can simplistically be described by the
evolution equation for the interparticle distanceR12 = r1 − r2
as:

dR12

dt
= ΔV|| (33)

where ΔV|| = u1|| −u2|| is the longitudinal velocity difference
(computed along R12). In developed turbulence, ΔV|| can be
estimated from the Kolmogorov 4/5 law: ⟨ΔV||⟩3 = − 4

5
𝜀r.

Then,ΔV|| ∝R1/3 and d⟨R12⟩
dt

∝ R1∕3, or in a more general case

d⟨R12⟩
dt

∝ R𝛼 𝛼 < 1 (34)

For 𝛼 = 1/3, ⟨R2⟩∼ t3, which is the Richardson’s Law
(1926).

8 CONCLUSIONS

We discussed fundamental concepts, which are used to
describe turbulent flows. Particular attention is paid to the
Kolmogorov theory of homogeneous isotropic 3D turbulence
in incompressible fluid, which is based on the Richardson’s

idea of energy cascade. A brief review of numerical modeling
of turbulence is given. Recent progress in understanding the
robustness of 2D turbulence makes it by far more ubiqui-
tous than it was initially thought. In particular, the identi-
fication of 2D turbulence in 3D flows, such as thick fluid
layers, or on the surface of water perturbed by waves,
opens numerous opportunities to apply understanding of 2D
turbulence to geophysical flows. The role of turbulence in
mixing and dispersion of matter is best characterized using
Lagrangian statistics. Overall, we just scratched the surface
in this fast-developing field of modern science.

GLOSSARY

Energy cascade A multi-step energy transfer process
between scales in turbulent flows.

Enstrophy Integral of the square of the vorticity.
Inertial interval A range of scales or wave numbers in

which energy is transferred from scale
to scale without forcing or dissipation.

Inverse cascade Spectral energy transfer from smaller to
larger scales in two-dimensional
turbulence.

Kolmogorov
scale

A dissipative scale at which turbulent
cascade in three-dimensional
turbulence is terminated.

Pair dispersion A statistical law of separation of two
initially close fluid particles in a flow.

Single particle
dispersion

A law determining how fast a fluid
particle in a flow moves away from its
initial position.

Spectral
condensation

The accumulation of turbulent energy at
the scales close to the boundary box
size in two-dimensional turbulence.
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