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We report the first observation of extreme wave events (rogue waves) in parametrically driven capillary

waves. Rogue waves are observed above a certain threshold in forcing. Above this threshold, frequency

spectra broaden and develop exponential tails. For the first time we present evidence of strong four-wave

coupling in nonlinear waves (high tricoherence), which points to modulation instability as the main

mechanism in rogue waves. The generation of rogue waves is identified as the onset of a distinct tail in the

probability density function of the wave heights. Their probability is higher than expected from the

measured wave background.
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Extreme wave events, also referred to as rogue or freak
waves, are mostly known as an oceanic phenomenon re-
sponsible for a large number of maritime disasters. These
waves, which have heights and steepness much greater
than expected from the sea state [1], have become a focus
of intense research in the last decade. Recently, large wave
events were observed in other wave systems: optical rogue
waves [2] and acoustic waves in superfluid helium [3].
These discoveries indicate that rogue waves may be rather
universal.

The rarity of these events in the ocean and obvious
difficulties in their systematic characterization restrict the
development of theoretical models of the rogue wave
generation. Currently four to five competing hypotheses
of rogue waves are considered [4]. Among them is the
nonlinear mechanism of the wave-wave interactions, such
as modulation instability. However, no direct evidence in
support of this hypothesis has yet been found.

Further progress in the rogue wave studies can be made
by reinforcing that they constitute a new class of wave
phenomena observed in different physics contexts. An
ultimate goal of the research into the physics of rogue
waves is to establish mechanisms responsible for their
generation in order to (a) reliably predict their probability
(in engineering applications), (b) generate and control such
waves (e.g., in optical fibers), and (c) to avoid or suppress
them (in the ocean).

Among the key questions related to the studies of rogue
waves are the following. (1) Does the probability of rogue
waves depend on the surrounding wave amplitudes?
(2) Are there measurable characteristics of the wave back-
ground which would be indicative of the rogue wave
probability? Modulation instability (see [5] and references
therein) has long been considered a likely mechanism for
the generation of rogue waves owing to its universality. It
has been found in surface gravity waves (Benjamin-Feir
instability [6]), Rossby and drift waves ([7,8] and refer-
ences therein), Langmuir waves in plasma, and optical
waves [5]. Modulation instability is considered an impor-

tant factor affecting the probability density function of the
surface elevation in surface gravity waves [9]. It is also a
major factor in the generation of optical rogue waves due,
for example, to collisions of breathers found in numerical
simulations of nonlinear Schrödinger equation [10].
Though on the conceptual level there is an agreement on
the importance of modulation instability for the rogue
wave generation, there is no direct experimental evidence
of the relation between the instability and probability of
rogue waves.
In this Letter we report the first observation of extreme

wave events in nonlinear capillary waves. We show that the
probability of capillary rogue waves strongly increases in a
nonlinear stage of modulation instability. We present the
first computation of the tricoherence which suggests that
the degree of coherent four-wave coupling at this stage is
high.
Capillary waves belong to the higher-frequency branch

of the surface waves, for which the restoring force is the
surface tension. Their wavelengths are shorter than about
10 mm. Because of their smaller scale, capillary waves can
be studied under well-controlled conditions in the labora-
tory using a variety of experimental methods to describe
their space-time statistics and nonlinear wave-wave inter-
actions. Capillary waves in our experiments are excited
parametrically in a vertically shaken container filled with
water whose depth is much greater than the wavelength
[11]. In these experiments waves are forced by shaking the
container at the frequency of 60 Hz with the acceleration in
the range of a ¼ ð0:3–5Þg. It should be noted that the
results reported here are not sensitive to the choice of
forcing frequency. The strength of forcing is characterized
by the value of supercriticality above the threshold of
parametric excitation ath, " ¼ a=ath � 1. The strongest
parametrically excited wave is the first subharmonic of
the forcing frequency at f0 ¼ 30 Hz and several of its
harmonics of smaller amplitudes. We developed several
techniques to capture the dynamics of nonlinear capillary
waves in a broad range of amplitudes with high temporal
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and spatial resolution. In the most direct method the per-
turbed surface is visualized by adding a small amount of a
fluorescent dye (rhodamine B) to the water and by illumi-
nating it using a thin (0:2 mm� 16 mm) green laser sheet
covering almost two wavelengths at the main frequency.
The motion of the (orange) fluorescent surface in the
vertical cross section is then captured by fast video camera
at 600 frames per second, Fig. 1(a). An orange optical filter
in front of the camera lens discriminates against the direct
reflection of green laser light into the camera. The surface
contour is detected using standard edge detection tech-
niques to produce time-resolved records of the surface
elevation. This technique works reliably at high wave
amplitudes for waves of arbitrary steepness.

Figure 2 shows a time trace of the surface elevation �ðtÞ
measured at the strongest forcing, " ¼ 5. This trace illus-
trates an extreme wave event (> 6 mm wave crest height).
The peak amplitude exceeds the standard deviation of the
wave background by a factor of more than five, as indi-
cated by a horizontal gray line in Fig. 2(a). Two movie
frames show the waveforms: before the peak, Fig. 2(b), and
during the large event, Fig. 2(c). The rogue wave is char-
acterized by an almost vertical wave front. Figure 2(d)
shows the probability density function (PDF) of the nor-
malized wave crest heights x ¼ �c=� (� is the standard
deviation) recorded for 300 s, or 104 wave periods. Up to
the crest heights of x ¼ 5, the PDF is approximately ex-
ponential, �e�2x. However the strongest waves, x > 5,
have a probability which is substantially higher than ex-
pected from the e�2x trend.

An important question related to the high probability of
large events seen in Fig. 2(d), is whether there is a thresh-
old for the occurrence of rogue waves. The fast video
technique does not provide sufficient spatial resolution to
resolve wave heights at low forcing. To characterize the
onset of rogue waves, a more sensitive technique is used,
based on the measurement of the intensity of light trans-
mitted through a layer of diffusing liquid, whereby the
intensity is proportional to the surface height [12,13]. A

thin (<0:2 mm diameter) laser beam is launched into the
container from below, normal to the free surface of the
water, as shown in Fig. 1(b). The transmitted laser light is
collected onto the diffusive screen, which is imaged into a
photomultiplier tube. This technique is very sensitive to
small surface perturbations and it complements fast video
imaging required at large wave amplitudes.
Figure 3 shows spectra of parametrically excited waves

at 30 Hz along with the corresponding PDFs for three
levels of forcing starting at " ¼ 0:2, Fig. 3(a). As the
forcing is gradually increased we first observe the develop-
ment of discrete frequency sidebands, Fig. 3(b), in agree-
ment with classical phenomenology of modulation
instability (see, e.g., [5]). At " ¼ 1:43, Fig. 3(c), the spec-
trum becomes continuously broadened showing exponen-
tial tails. Further increase in forcing leads to further
broadening. The shape of these spectra (‘‘triangular’’
when plotted in log-linear scale) can be approximated by
the hyperbolic secant function [11].
A new observation here is that the broadened spectra

showing exponential tails occur above a certain forcing
threshold (" > 1:2). Even more remarkable is the observa-
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FIG. 1 (color online). Experimental setup: (a) fast video re-
cording of the fluorescing water surface, (b) local measurement
of the laser beam transmission through diffusing liquid.
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FIG. 2 (color online). Phenomenology of capillary rogue
waves at high level of forcing, " ¼ 5. (a) Time trace of the
surface elevation showing an extreme wave event in parametri-
cally driven capillary waves. Video frames show waveforms
(b) 4 periods before the large event, and (c) during the large
wave event (gradient of the light intensity inside steep waves is
due to the light refraction). (d) Probability density function
(PDF) of the wave crests versus normalized crest height.
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tion of the strongly increased probability of the large wave
events, as seen in Fig. 3(f). The onset of the tails in the PDF
of the waves with the crest heights in excess of 6� co-
incides with the formation of exponential spectra. This
high probability of rogue waves is then sustained up to
the highest levels of forcing, up to " ¼ 5, as in Fig. 2(d).

In the time domain the onset of discrete frequency side-
bands corresponds to a relatively smooth wave modulation,
Fig. 4(a). Above the threshold of " > 1:2 much deeper
modulation seen as the ensemble of individual wave enve-
lopes is observed, Fig. 4(b). This transition occurs above
the same threshold as the transition to exponential spectra.
Indeed, the inverse Fourier transform of the hyperbolic
secant spectra Ef / sech½bðf� f0Þ� is given by sðtÞ ¼
ð�=bÞsech½�2=ðbtÞ�eif0t, which is a well-known solution
of the nonlinear Schrödinger equation, describing en-
velope solitons (see, e.g., [14,15] and references therein).
Figure 4(c) shows a zoomed-in envelope soliton. Similar
envelope solitons are also found in surface gravity waves
[16,17].

The origin of the exponential spectra has been discussed
from the point of view of envelope soliton statistics [11].
Stronger forcing leads to the generation of shorter envelope
solitons and broader frequency spectra. The generation of
nonlinearly broadened spectra in surface wave experiments
resembles spectral broadening of the light pulses in pho-
tonic crystal fibers studied in the context of the super-

continuum generation [18] at its initial stage. The
formation of the exponential spectra in optical fibers is
attributed to either the generation of solitons [19,20], or
more recently, to the nonlinear dynamics of the Akhmediev
breathers [21]. Our results, in particular, the transition from
discrete sideband spectra to exponential spectra, Figs. 3(b)
and 3(c), indicate that the change in the spectra corre-
sponds to a transition from smooth quasiperiodic modula-
tion of waves to the formation of ensembles of envelope
solitons, as shown in Fig. 4(c). The rogue wave generation
probably results from a process, similar to the collision of
breathers [10], or it is due to the envelope soliton inter-
actions observed in nonlinear numerical models [22].
In any case, modulation instability appears as a charac-

teristic feature for such a broadening. Since four-wave
interactions of the carrier wave with its sidebands lie in
the heart of modulation instability, one needs to detect
these interactions to positively identify the instability in
experiments. Modulation instability is the process in
which sidebands interact with the strong carrier wave
simultaneously satisfying the matching rules for the
wave numbers, k1 þ k2 ¼ k3 þ k4, and for frequencies,
!1þ!2¼!3þ!4. For example, in the spectrum of
Fig. 3(b) one can see three peaks corresponding to the
wave, f0 ¼ 30 Hz, and its two sidebands, f1;2 ¼
30� 0:9 Hz. The degree of the four-wave coupling can
be characterized by tricoherence [23], or the normalized
trispectrum, defined as

t2ð!1; !2; !3Þ ¼ jhF1F2F3F
�
1þ2�3ij2

hjF1F2F3j2ihjF1þ2�3j2i
; (1)

where Fi is the Fourier component of the surface elevation
�ðtÞ at the frequency !i and F�

1þ2�3 is its complex con-

jugate at the frequency !1 þ!2 �!3. If tricoherence is
zero, it is indicative of no coherent phase coupling between
the wave quartets, while t2 ¼ 1 corresponds to coherent
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FIG. 3 (color online). Spectra and probability distribution
functions above the threshold of the parametric wave excitation.
(a)–(c) Frequency spectra around 30 Hz and corresponding (d)–
(f) probability density functions at four different levels of
supercriticality ".
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FIG. 4. Temporal evolution of the wave height at (a) " ¼ 0:6
and (b) " ¼ 1:43. The inset (c) shows zoom into one of the
envelope solitons.
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phase coupling. Figure 5 shows the maximum value of
tricoherence as a function of forcing computed for the
transmitted light intensity signals whose spectra are shown
in Fig. 3. The level of the tricoherence is high, t2 > 0:5, at
the forcing above " ¼ 1:0 indicating strong phase coupling
in four-wave interactions. The level of tricoherence com-
puted for the test noise signal is less than t2 < 0:15. Lower
tricoherence at lower forcing, " � 1:0, may be due to the
insufficient frequency resolution in the tricoherence com-
putation (�f ¼ 1:6 Hz), such that the sidebands at f1;2 ¼
30� 0:9 Hz were not resolved. The high level of tricoher-
ence confirms the significance of the underlying four-wave
interactions.

It should be noted that the dispersion relation of capil-
lary waves allows simultaneous satisfaction of the three-
wave matching rules. This is why three-wave interactions
are usually considered the most likely mechanism of the
wave-wave interactions among capillary waves. The new
and perhaps unexpected finding in our work is that the
dominant nonlinearity here is due to modulation instability.
A high level of tricoherence indicates that 4-wave reso-
nances are at work here and modulation instability is in-
deed present. Further evidence in support of modulation
instability will be reported elsewhere.

Summarizing, we have shown that extreme wave events
occur in parametrically excited capillary waves. These
rogue waves are very steep. Their heights exceed the
standard deviation of the surface elevation by a factor of
5 to 12. Rogue waves are represented in the probability
density functions as a distinct tail. The rogue wave proba-
bility is 1 to 2 orders of magnitude higher than expected
from the PDF of the wave background. A high level of
phase coupling in four-wave interactions supports the hy-
pothesis that modulation instability is the key ingredient in
the rogue wave generation. This instability leads to a
qualitative change in the frequency spectrum of the waves.
The onset of exponential wave spectra is correlated with
the observation of tails in the PDF. In the time domain the
observation of rogue waves is correlated with breaking of
the modulated wave into ensembles of envelope solitons.

These findings may also help understanding the rogue
wave probability and mechanisms of their generation in
other wave systems.
The authors are grateful to N. Akhmediev for useful
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