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We present experimental results on turbulence generated in thin fluid layers in the presence of a large-

scale coherent flow, or a spectral condensate. It is shown that the condensate modifies the third-order

velocity moment in a much wider interval of scales than the second one. The modification may include the

change of sign of the third moment in the inverse cascade. This observation may help resolve a

controversy on the energy flux in mesoscale atmospheric turbulence (10–500 km): to recover a correct

energy flux from the third velocity moment one needs first to subtract the coherent flow. We find that the

condensate also increases the velocity flatness.
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More often than not, turbulence coexists with a flow
coherent across the system size. Such flows can be exter-
nally generated or appear as a result of spectral condensa-
tion due to an inverse turbulent cascade (see, e.g., [1–6]).
Understanding interaction between turbulence and a mean
flow is of prime importance for many problems in astro-
physics, geophysics, plasma confinement, etc. From a fun-
damental viewpoint, it is interesting to understand how
spectral condensation breaks symmetries that emerge in
inverse cascades [7], and how the condensate suppresses
turbulence level and turbulent fluctuations [6,8,9]. From a
practical viewpoint, atmospheric physics presents arguably
the most important cases of turbulence which interacts with
the large-scale flows.

Atmospheric motions are powered by gradients of solar
heating. Vertical gradients cause thermal convection on the
scale of the troposphere depth (less than 10 km).
Horizontal gradients excite motions on the scales from
1000 to 10 000 km. Both inputs are redistributed over
wide spectral intervals by nonlinear interactions [10–12].
The wave number spectra measured in the upper tropo-
sphere and in the lower stratosphere have shown two power

laws: EðkÞ / k�5=3 for the scales between 10 and 500 km,
and a steeper spectrum with EðkÞ / k�3 in the range (500–
3000) km (similar to the spectra in Fig. 2) [13].
Interestingly, such spectra appear in the Kraichnan theory

of 2D turbulence [10], where EðkÞ ¼ C�2=3k�5=3 corre-

sponds to an inverse energy cascade and EðkÞ ¼
Cq�

2=3k�3 to a direct vorticity cascade, � and � being

the dissipation rates of energy and enstrophy, respectively.
This prompted a two-source picture of atmospheric turbu-
lence with a planetary-scale source of vorticity and depth-
scale source of energy, where the large-scale spectrum is
due to a direct vorticity cascade [14]. Alternatively, that
spectrum can result from an inverse cascade of inertio-
gravity waves [3]. Yet another possibility is that the main
energy at large scales is actually not in turbulent fluctua-
tions but in a long-correlated flow (condensate), which can
be either generated by external forces or appear in the

process of spectral condensation (turbulent counterpart of
Bose-Einstein condensation), as suggested in [4] and dem-
onstrated experimentally here. No less controversial is the
nature of the mesoscale 5=3-spectrum. Is it an energy
cascade, and what is the flux direction?
In homogeneous turbulence, spectral energy flux is ex-

pressed via the third-order moment of the velocity [15]:
� ¼ S3=r, where S3 ¼ ½hð�VLÞ3i þ h�VLð�VTÞ2i�=2. Here
�VL and �VT are, respectively, longitudinal (L) and trans-
verse (T) components of the velocity difference between
points separated by r. Angular brackets denote time aver-
aging. Positive S3 corresponds to the inverse energy cas-
cade (from small to large scales). Measurements of S3 in
the atmosphere gave a negative value in the interval 10–
100 km, which was interpreted as the signature of the
forward energy cascade [16]. Here, we demonstrate ex-
perimentally that a negative small-scale S3 in a system with
an inverse cascade can be caused by a large-scale shear
flow.
Let us first consider how small- and large-scale parts of

the velocity difference (respectively, �v and �V) contrib-
ute to the second and third velocity moments. The large-
scale flow is spatially smooth so that �V ’ sr where s ¼
V=Ls is a large-scale velocity gradient and Ls is the shear
scale which depends on the system size and on the topol-

ogy of the flow. Comparing hð�VÞ2i ffi s2r2 with hð�vÞ2i ffi
Cð�rÞ2=3, we see that the small-scale (turbulent) part domi-

nates at the scales smaller than lt ffi C3=4s�3=2�1=2. For the
third moment, we compare hð�vÞ3i ffi �r with the cross-

correlation term h�Vð�vÞ2i ffi srCð�rÞ2=3 and observe that

the influence of �V extends to a much smaller scale l� ffi
C�3=2s�3=2�1=2 because the dimensionless constant C is
substantially larger than unity, as discussed below. At the
scale l�, hð�VÞ3i ’ ðsrÞ3 � �r. That attests to a nonlocality
of condensate-turbulence interaction: not only does con-
densate break scale-invariance of turbulence, but it also
imposes different scales on different moments.
The above estimates are true for a large-scale part pro-

duced by any source. In particular, when it is produced by
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an inverse cascade (as in the experiments described below)
one estimates s as follows. Let the linear damping rate� be

smaller than the inverse turnover time C1=2�1=3L�3=2 for
the vortices comparable to the system size L. Then, the
flow coherent over the system size (the condensate) ap-
pears [2,5,6,17–19] with the velocity estimated from the

energy balance, �V2 � 2�, which gives s ffi V=Ls ffi
L�1
s

ffiffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
and

kt ¼ �=lt ffi �L�3=2
s ðC�=2Þ�3=4�1=4: (1)

Note that this is not the condition that the turnover time at lt
is ��1, as in [17]; incidentally, Eq. (1) gives a correct
estimate (kt ffi 1) for their conditions. The spectrum
EðkÞ / k�3 at k < kt is due to the condensate [5,6,17],

while EðkÞ ¼ C�2=3k�5=3 is expected at kt < k < kf.

Here, we report the experiment in which the strength and
the spectral extent of the condensate are varied by chang-
ing either� or L. The experimental setup shown in Fig. 1 is
similar to those described in [6,19,20] but has a substan-
tially larger number of forcing vortices (up to 900), higher
spatial resolution, and larger scale separation (L=lf � 30).

Turbulence is generated electromagnetically in stratified
thin fluid layers whose thicknesses are varied to achieve
different �. A heavier nonconducting fluid (Fluorinert,
specific gravity SG ¼ 1:8) is placed at the bottom. A
lighter conducting fluid, NaCl water solution (SG ¼
1:03), is placed on top. Nonuniform magnetic field is
produced by a square matrix of 30� 30 permanent mag-
nets (10 mm apart). The electric current flowing through
the top (conducting) layer produces (J � B)-driven vorti-
ces which generate turbulence. Square boundaries with
L ¼ ð0:09–0:24Þ m are used. To visualize the flow, imag-
ing particles are suspended in the top layer and are illumi-
nated by a 1 mm laser sheet parallel to the fluid surface.
Laser light scattered by the particles is filmed from above
using a 12Mpixel camera. Green and blue lasers are pulsed
for 20 ms consecutively with a delay of (20–150) ms. In
each camera frame, two laser pulses produce a pair of
images (green and blue) for each particle. The frame
images are then split into a pair of images according to
the color. The velocity fields are obtained from these pairs
of images using particle image velocimetry. The damping
rate (in the range � ¼ 0:05–0:5 s�1) is estimated from the
decay of the total kinetic energy after switching off the
forcing: E / e��t.

Figure 2 shows the energy spectrum measured for large
L ¼ 0:235 m and an intermediate� ¼ 0:16 s�1. The force
wave number is kf � 400 m�1; EðkÞ / k�3 at k > kf,

while EðkÞ / k�5=3 at kt < k < kf. At k < kt � 80 m�1,

in the condensate range, the spectrum is steeper and close
to k�3. Because of the condensate, the spectrum has k�3

and k�5=3 ranges for the large and intermediate scales,
respectively, similarly to the Nastrom-Gage spectrum
[13]. Spectra for different L and � are shown in Fig. 3.
At fixed � ¼ 0:15 s�1, the knee of the spectrum shifts
from kt � 80 m�1 for L ¼ 0:235 m to kt � 135 m�1 for
L ¼ 0:15 m, Fig. 3(a). For fixed L, linear damping affects
kt as shown in Fig. 3(b). Going from � ¼ 0:15 s�1 to � ¼
0:06 s�1 changes kt from 80 m�1 to kt � 130 m�1. These
observations are in a good qualitative agreement with (1).
By further reducing L, we achieve a regime when kt � kf,

and the k�5=3 range disappears, such that the entire spec-
trum is EðkÞ / k�3, both above and below kf, as in [21].

Therefore, we can control the shape of the spectrum and
the relative strength of the condensate with respect to
turbulence.
We now analyze two regimes, a weak and a strong

condensates, whose spectra are shown in Figs. 4(a)–4(c).
A weak condensate of Fig. 4(a) was generated at � ¼
0:3 s�1 and L ¼ 0:235 m, while a stronger condensate of
Fig. 4(c) was obtained at � ¼ 0:15 s�1 and L ¼ 0:15 m.
For the weak condensate case, Fig. 4(b) shows normalized

velocity moments. Skewness, Sk ¼ S3L=S
3=2
2L (open tri-

angles) is positive, and it is in the range of Sk ¼ 0–0:2
(skewness of the Gaussian process is Sk ¼ 0). Both longi-
tudinal S3L ¼ hð�VLÞ3i and transverse S3T ¼ h�VLð�VTÞ2i
moments are positive in the entire range of scales, in agree-
ment with expectations for the inverse energy cascade. The
SkðrÞ dependence has a knee at about r ¼ 0:04 m, which
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FIG. 1 (color online). Experimental setup.
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FIG. 2 (color online). Kinetic energy spectrum measured for
the largest box L ¼ 0:235 m and intermediate damping � ¼
0:16 s�1. The guide lines show the power laws for different
ranges: k�3 vorticity cascade, k�5=3 energy cascade, and k�3

condensate.
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corresponds to the knee in the spectrum at kt � 80 m�1,

Fig. 4(a). The Kolmogorov constant is determined as C ¼
EðkÞ��2=3k5=3, where � ¼ S3=r. In the weak condensate, at
r < �=kt � 0:04 m, we have C ¼ 5:8, which is in the
range of the values C ¼ 5:8–7 previously obtained in
numerical simulations of 2D turbulence (see [22] and
references therein). At larger separations, r > �=kt, the
function SkðrÞ grows fast and cannot be approximated by
a constant.

The third-order velocity moment differs markedly in the
presence of strong condensate. Figure 4(d) shows that
skewness (open triangles) varies in this case in a much
wider range, Sk ¼ �0:2–0:5. Flatness,F ¼ S4L=S

2
2L (open

squares), also varies, in the range F ¼ 2:5–5, while its
Gaussian value is F ¼ 3. For the stronger condensate, the

spectrum scales as EðkÞ / k�5=3 in the range kf > k >

kt � 125 m�1. S3ðrÞ and Sk change sign at rt ¼ �=kt
[Fig. 4(d)]. Such an S3 dependence on r resembles S3ðrÞ
measured in the lower stratosphere [16]. Note that in our
case, all the driving comes from small scales, and there is
no direct cascade at all, yet S3 is strongly modified com-
pared with the weak condensate case.

The generation of the mean flow can be revealed by a
temporal averaging of the instantaneous velocity fields:
�Vðx; yÞ ¼ ð1=NÞPN

n¼1 Vðx; y; tnÞ. The power spectrum of

the mean flow [5,6] is close to �EðkÞ / k�3. The velocity
field contains both the mean component and turbulent
velocity fluctuations: �V ¼ � �V þ � ~V. From the data cor-
responding to Fig. 4(c) (strong condensate), we estimate
that hð�VÞ2i differs from hð� ~VÞ2i by about 20–30%.
However, hð�VÞ3i and hð� ~VÞ3i differ by orders of magni-

tude, and even the sign can be different. Note that signs,
values, and functional dependencies S3ðrÞ vary a lot for
different topologies of the condensate flows and also de-
pend on the mean shear in such a flow.
To recover the statistical moments of the turbulent ve-

locity fluctuations we take N ¼ 350 instantaneous velocity
fields, subtract their mean flow and then compute the
Fourier spectrum and the structure functions. The result
for the weak condensate case is shown as solid symbols in
Fig. 4(b). Mean subtraction brings skewness (solid tri-
angles) much closer to its Gaussian value of S ¼ 0, while
flatness (solid squares) is only slightly higher than its value
in isotropic turbulence, F ¼ 3 [19].
The result for the strong condensate is shown in

Figs. 4(e) and 4(f). The subtraction of the mean restores

the k�5=3 range. In fact, the EðkÞ scatter in Fig. 4(e) is less
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FIG. 4 (color online). (a), (b) Weak condensate case; (c)–
(f) Strong condensate. (a) and (c) are the kinetic energy spectra.
(b) Normalized velocity moments for weak condensate: skew-
ness Sk (triangles) and flatness F (squares). The moments are
computed before (open symbols) and after (solid symbols) the
mean flow is subtracted from individual velocity fields.
(d) Skewness (triangles) and flatness (squares) for the case of
strong condensate before subtracting the mean flow. After sub-
tracting mean flow in the stronger condensate case: kinetic
energy spectrum (e), (f) skewness (triangles) and flatness
(squares).

10 100 1000

=0.06α

α = 0.15

k (m )-1

E (k) [a.u.]

10-6

10-5

10-7

10-8

10-9 (b)

10 100 1000

L=0.235 m

L=0.15 m

E (k) [a.u.]

k -5/3

10-6

10-5

10-7

10-8

10-9 (a)

k-5/3

k (m )-1

FIG. 3 (color online). Kinetic energy spectra (a) for different
box sizes at � ¼ 0:15 s�1, and (b) for different linear damping
rates at L ¼ 0:235 m.

PRL 101, 194504 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

7 NOVEMBER 2008

194504-3



than in the total spectrum of Fig. 4(c). The subtraction has
even more dramatic effect on the higher moments. As seen
in Fig. 4(f), there is less variability in both skewness and
flatness. S3 is now positive and it is a linear function of r in
the ‘‘turbulence’’ range, at r < rt. The spectral energy flux
is deduced as � ¼ S3=r. The value of the Kolmogorov

constant C ¼ EðkÞ��2=3k5=3 � 7:0 appears to be close to
the values obtained in numerical simulations. The recovery
of the linear positive S3ðrÞ has also been observed at even
stronger condensates.

We observe that the condensate formation substantially
increases flatness: from about the Gaussian value of 3 for
the weak condensate [solid squares in Fig. 4(b)] to F ’ 5:5
for the strong condensate [solid squares in Fig. 4(f)]. This
can be explained as follows: condensate shear suppresses
turbulence level by stretching and destroying vortices.
Note that strong vortices with the vorticity exceeding the
external shear survive. Therefore, strong fluctuations are
affected by condensate less than the mean level, which
increases F.

It is important to note that similarity of our spectra to
those of [11,13] does not necessarily mean that k�3 spec-
trum at large scales in the Earth atmosphere is also fed by
the inverse cascade. To establish whether this is the case,
one needs to analyze the atmospheric data in the way
described here: subtract the coherent flow, recalculate the
second and the third moment of fluctuations, and use
Eq. (1). It is likely that the baroclinic (large-scale) insta-
bilities play a role in forcing the large-scale flows. To
model an external large-scale forcing in our experiments,
we added a large magnet on top of the small-scale forcing
(as described in [6]) and found that the modifications in S3
are similar to those when the large-scale flow is formed via
spectral condensation. The mean subtraction recovers the
energy flux from small to large scales in both cases.
Similarly, the mesoscale turbulence in the Earth atmo-
sphere should be affected by the large-scale flow regardless
of its origin. Let us stress that our experimental system is
much simpler than the Earth atmosphere. With regard to
the mesoscale and large-scale atmospheric motions, there
are two most important differences, namely, the character
of stratification and the absence of rotation in our system.
Recent numerical simulations (see [23] and references
therein) show that stratification may enforce a 3D dy-
namics and the forward energy cascade. On the other
hand, recent experimental studies of decaying turbulence
suggest a strong role of rotation in establishing a quasi-2D
regime in which geostrophic dynamics is dominant and the
energy cascade is inverse (regime of low Froude and
Rossby numbers) [24]. More experiments in forced turbu-
lence are needed to understand the competing effects of
rotation and stratification along with the complex interplay
between turbulence and waves, resonant wave-wave inter-

actions, etc. True nature of atmospheric turbulence both at
large and mesoscales can only be revealed by the atmos-
pheric measurements. What we have shown here is the
need to separate mean flows and fluctuations to recover the
energy flux.
We conclude by stating that the condensate strongly

modifies both turbulence level and its statistics; different
velocity moments are affected at different scales.
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