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Plasma Physics C17 1993: Final Examination

Attempt four questions. All six are of equal value. The best four marks will
be considered, but candidates are discouraged from answering all six questions
because it is unlikely that there will be sufficient time.

Show all working and state and justify relevant assumptions briefly.

Question 1 (10 marks): (answer both parts, illustrate with appropriate equa-
tions)

a List three quantitative criteria for a plasma and explain each in a few lines.

b Describe three out of four of the following phenomena, and their relation to
adiabatic invariants.

i adiabatic compression

ii Fermi acceleration

iii ion cyclotron heating

iv transit time magnetic pumping

Question 2 (10 marks): Discuss one of the following: answers are not re-
stricted to material from the specialist lectures

a Plasma fusion and magnetic confinement devices

b Extraterrestrial plasma and plasma phenomena

c Plasma diagnostics using laser radiation

d Describe the process of electrical breakdown between electrodes in gas at
pressures near 1 Torr, including relevant equations. Explain why secondary
emission is important, and at which electrode.

Question 3 (10 marks): Derive an expression for the Debye length in planar
(1-D slab) geometry taking into account both Te and Ti. Assume time scales long
enough so that both species have equilibrium (Maxwellian) distributions. Discuss
the validity of your treatment of the ions.

Question 4 (10 marks):

(5/10) aUsing the single fluid MHD equations and Fick’s law (Γ = −D∇n),
obtain the coefficient of diffusion perpendicular to magnetic field lines.

(2/10) b Explain how and why this diffusion depends on plasma resistivity.
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(3/10) c In a few sentences, explain neoclassical diffusion qualitatively with the
aid of a few sketches.

Question 5 (10 marks): Consider a high frequency plane transverse elec-
tromagnetic wave in an unmagnetized plasma. (B0 = 0)

a From the two fluid electron equation, show that

j1 =
ie2n0E1

mω

b and continue, by considering Maxwell’s equations, to derive the dispersion
relation.

c Calculate the group velocity and sketch both the group and phase velocities
on graphs with labels and numerical scales for ne = 1 × 1018 ± 3.

Question 6 (10 marks): Consider the plasma sheath region near a wall in
planar geometry.

a Write down Poisson’s equation including both electron and ion terms, explain-
ing and justifying your assumptions.

b Justify under what conditions the electron contribution in (a) can be ignored,
and solve the equation for those conditions to obtain a relation between V
(or Φ) the sheath width d, and J.
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Plasma Physics C17 1994: Final Examination

Attempt four questions. All are of equal value. Candidates are discouraged
from answering all six questions because it is unlikely that there will be sufficient
time.

Show all working and state and justify relevant assumptions briefly.

Question 1 (10 marks): (answer both parts, illustrate with appropriate equa-
tions)

a List three quantitative criteria for a plasma and explain each in a few lines.

b Describe three out of five of the following phenomena.

i Debye shielding.

ii Boltzmann’s relation for electrons.

iii Energy transfer from a plasma to a conducting wall.

iv Mechanisms for plasma generation, confinement, and loss.

v Discuss an example of a plasma heating scheme that relies on conserva-
tion of an adiabatic invariant, and one that relies on the breaking of
an adiabatic invariant.

Question 2 (10 marks): Discuss one of the following: answers are not re-
stricted to material from the specialist lectures

a Plasma fusion and magnetic confinement devices

b Low temperature plasma, and its use in materials processing.

c Plasma diagnostics - measurements of density, temperature etc.

d Discuss Coulomb collisions, explaining the basic properties of the collisions, the
range of the interaction, the effect on plasma resistivity, runaway electrons,
indicating scaling (e.g. with n, T etc.) where appropriate.

Question 3 (10 marks):

a Show that the electrical resistivity of a fully ionized plasma can be expressed
in the form

η =
νeime

nee2

where νei is the electron-ion collision frequency. Do not attempt to find an
expression for νei or derive Coulomb scattering!
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b Explain why η is almost independent of ne even though ne appears in the
equation for η. Why ”almost independent”?

c Explain why η decreases as the electron temperature Te increases.

Question 4 (10 marks):

a Sketch the motion of ions and electrons in a magnetic field B, directed out of
the page, when B increases in a direction vertically up the page as shown
below. Label the sketches with appropriate dimensions.

b An electron moves from point P to point Q in a magnetic mirror. At point P,
the magnetic field is 0.5 Tesla, the perpendicular energy (1

2
mv2

⊥ = 200 eV),
and the parallel energy (1

2
mv2

‖ = 600 eV). What is the magnetic field at
point Q if the electron is reflected at this point?

c Obtain and expression for the curvature drift of an electron travelling at veloc-
ity v‖ along a circular magnetic field line of radius Rc. How are curvature
drift and grad-B drift related?

Question 5 (10 marks): For the electromagnetic mode with E1 ⊥ B0 and
k ‖ B0 it can be shown that

Ex(ω
2 − c2k2 − α) + Eyiαωc/ω = 0

Ey(ω
2 − c2k2 − α) − Exiαωc/ω = 0

(Equn 6.24 in notes), where

α =
ω2

p

1 − ω2
c/ω

2

(3/10) a Continue to obtain the dispersion relation for this wave (in the form
given in the formula handout for the exam)

(4/10) b show (briefly) that the modes are right and left hand circularly polar-
ized, and identify which is which.

(3/10) c Define and obtain the cutoff frequencies.

Question 6 (10 marks):

aUsing the single fluid MHD equations and Fick’s law (Γ = −D∇n), obtain the
coefficient of diffusion perpendicular to magnetic field lines.
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b Use the single fluid MHD Equation of motion, and the mass continuity equa-
tion to calculate the phase velocity of an ion-acoustic wave in an unmagne-
tized plasma with Te >> Ti.

spare,10) The plasma potential is usually a few KTe above the potential of
its (conducting) container. Explain, and, justifying your assumptions, obtain an
approximate relation for the difference in potential Φp −Φw. (D

¯
ON’T derive the

Langmuir-Child law.)
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Plasma Physics C17 1996: Final Examination

Attempt four questions. All are of equal value. Candidates are discouraged from
answering all six questions as it is unlikely there will be sufficient time.

Show all working and state and justify relevant assumptions.
Question 1 (10 marks)

a Describe oscillation at the plasma frequency and the Debye length and the
relation between them.

b Discuss distribution functions, the Boltzmann equation and the relationship
between their respective zeroth, first and second order velocity moments.

c Using the equilibrium fluid equation of motion (set the convective derivative to
zero) and in the absence of collisions, show that the particle number density
distribution for Maxwellian electrons at temperature Te is described by the
Boltzmann relation

ne = n0 exp (eφ/kTe)

where E = −∇φ is the plasma electric field. What is the physical interpre-
tation of this formula. Use pictures to illustrate.

Question 2 (10 marks)

a Show that the resistivity of a very weakly ionized plasma can be expressed in
the form

η = 1/σ =
νenme

nee2

where νen is the electron-neutral collision frequency.

b Assuming that the electron-neutral collision cross section is independent of
particle velocity, calculate the scaling of the resistivity with Te and ne for
constant neutral density and compare and contrast with those scalings for
a fully ionized plasma.

Question 3 (10 marks)

a By considering the circular motion of an ion in a magnetic field B as a current
loop of magnetic moment µ = IA where I is the circulating ion current and
A is the area of the orbit, show that the diamagnetic flux associated with
the particle motion is proportional to the particle perpendicular kinetic
energy. Discuss how can this effect be used to estimate the plasma internal
perpendicular thermal energy.

b Draw orbits for electrons and ions in orthogonal electric and magnetic fields
for both weak and strong electric fields. Explain why there is no net current
associated with the particle drifts.
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c The grad B drift is in opposite directions for electrons and ions. Show, with
the aid of diagrams, how this drift renders impossible plasma confinement
in a purely toroidal magnetic field.

Question 4 (10 marks)

a Consider the following simplified steady state equation of motion for each
species in a fluid plasma

0 = qn(E + u×B) −∇p

where the electric and magentic fields are uniform but the number density
and pressure have a gradient. Taking the cross product of this equation
with B show that, besides the E×B drift, there is also a diamagnetic drift
given by

uD = (1/n)∇p×B/(qB2).

b Provide physical arguments to justify the reason for this drift. Explain if there
is any motion of the particle guiding centres associated with this fluid drift
and why it does not appear in the particle orbit theory.

Question 5 (10 marks)

a Using the single fluid equilibrium MHD equations and Fick’s law (Γ = −D∇n
where Γ = nu is the particle flux and D the diffusion coefficient), obtain
the coefficient of diffusion perpendicular to a magnetic field.

b Explain how and why this diffusion depends on plasma resistivity.

c Consider the non-equilibrium case. Ignoring gravity and Hall currents, com-
bine the single fluid equation of motion and the Ohm’s law to obtain

ρ
∂u

∂t
= σ(E×B) + σ(u×B)×B −∇p

By considering E = 0 and p = constant, solve this equation to show that
the fluid velocity perpendicular to B is given by

u⊥ = u⊥(0) exp (−t/τ)

where τ , the characteristic time for damping of the fluid flow across the
field lines is given by τ = ρ/(σB2). Comment on the scaling of τ with B
and σ.
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Question 6 (10 marks)

a Plot the wave phase velocity as a function of frequency for plasma waves
propagating along the direction of the magnetic field B, identifying cutoffs
and resonances for both electromagnetic and electrostatic wave modes.

b The dispersion relation for an em wave propagating in an unmagnetized plasma
is

v2
φ = c2/n2 = ω2/k2 = c2/(1 − ω2

pe/ω
2).

For ω2 � ω2
pe show that the phase shift suffered by such a wave (compared

with vacuum) on propagation through a plasma of length L is given by

φ = − ω

2ncrc

∫ L

0
ned


where ncr is the cutoff plasma density (at which ω = ωpe).
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Plasma Physics C17 1997: Final Examination

Attempt four questions. All are of equal value. Candidates are discouraged from
answering all six questions as it is unlikely there will be sufficient time.
Show all working and state and justify relevant assumptions.

Question 1 (10 marks)

a Assume a perturbation to charge neutrality in an unmagnetized plasma such
that, under the action of the restoring Coulomb force, an oscillating electric
field E = E0 exp (−iωt) is established. By considering the force felt by
an electron in such a field, show that an oscillating electron current j =
nee

2E0/(iωme) results. Using Maxwell’s equation

∇×b = µ0

(
j + ε0

∂E

∂t

)

where b is the associated magnetic perturbation, and assuming the pertur-
bation not to propagate (set the left side to zero), obtain an alternative
expression for j. By equating these expressions, obtain a formula for the
oscillation frequency ω. What is this frequency?

b Describe Debye shielding and the relationship between the plasma frequency
and Debye length.

c Briefly discuss distribution functions and the Boltzmann equation. What
is the relationship between their respective zeroth and first order velocity
moments.

Question 2 (10 marks)
Discuss two of the following

a Electric breakdown. Discuss to the significance of the parameter E/p and the
role of secondary emission.

b Boltzmann’s relation for electrons

c Ambipolar diffusion in an unmagnetized plasma

d Faraday rotation of an electromagnetic wave traversing a magnetized plasma.

e “Frozen-in” magnetic fields and resistive diffusion.

Question 3 (10 marks)
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a The Ohm’s law for an unmagnetized plasma in steady state is given by E = ηj
where η is the resistivity. Show that the resistivity of a fully ionized plasma
can be expressed in the form

η = 1/σ =
νeime

nee2

where νei is the electron-ion collision frequency. Do not derive the expres-
sion for the Coulomb collision frequency. With reference to the formula
sheet, explain why η is “almost” independent of density and why it de-
creases with increasing temperature.

b In the time-varying case, and including magnetic effects, the equations of
motion for the ions and electrons can be combined to give the single fluid
force balance and Ohm’s Laws:

ρ
∂u

∂t
= j×B

E − ηj = −u×B +
me

nee2

∂j

∂t
+

1

nee
j×B (10.1)

In these expressions, we have ignored the plasma kinetic pressure gradient
terms. Assuming a time variation of the form ∂/∂t = −iω compare the
magnitudes of the various terms on the right side of the Ohm’s law as a
function of frequency. Which terms dominate for ω � ωci. What about for
ω � ωce? (HINT: you will need to use the force equation for u).

c Combine the steady state Ohm’s law (neglecting Hall current)

E + u×B = ηj

and the force balance equation to obtain the the fluid flow velocity perpen-
dicular to the magnetic field

u⊥ =
E×B

B2
− η⊥

B2
∇p.

Use Fick’s diffusion law Γ⊥ = D⊥∇n to obtain an expression for the clas-
sical perpendicular diffusion coefficient for a fully ionized plasma and dis-
cuss its scaling with temperature. If the Hall current were retained in the
Ohm’s law, which additional component of the fluid flow would have been
obtained?

Question 4 (10 marks)

a Draw orbits for electrons and ions in orthogonal electric and magnetic fields
for both weak and strong electric fields. Explain why there is no net current
associated with the particle drifts.
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b The grad B drift is in opposite directions for electrons and ions. Show, with
the aid of diagrams, how this drift renders impossible plasma confinement
in a purely toroidal magnetic field.

c For slow time variations ω � ωci, the polarization drift velocity for ions and
electrons respectively is given by

vp = ± 1

ωcB

dE

dt

where ωc is the associated cycoltron frequency.

(i) Explain the origin of this effect

(ii) Calculate the current which flows as a result of a time varying electric
field.

(iii) Identifying this polarization current as equivalent to the electric dis-
placement current density for solid dielectrics

jD = ε0εr
∂E

∂t

where εr is the relative permittivity, express the relative permittivity
for the plasma in terms of the Alfven wave speed.

Question 5 (10 marks)
Consider a particle that is gyrating in a circular orbit in a substantially uni-

form magnetic field.

a Obtain an expression for the radius of the Larmor orbit of the particle in terms
of the orbital magnetic moment µ = mv2

⊥/(2B).

b Calculate the magnetic flux linked by this orbit as B is slowly changed?
Comment on its dependence on B.

c Evaluate the volume of magnetic field that has the same energy as the kinetic
energy of the particle. Consider the cylinder that has this volume and has
the same radius as the orbit of the particle. What is the height of this
cylinder? Do you recognize this expression?

d Suppose that a mirror field increases slowly with time. What will happen to
a particle that is confined between the magnetic mirrors?

e Why is the adiabatic invariant broken for time variations comparable with or
faster than the cyclotron frequency?
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Question 6 (10 marks)

a Plot the wave phase velocity as a function of frequency for electromagnetic
plasma waves propagating along the direction of the magnetic field B, iden-
tifying cutoffs and resonances.

b Radio signals from pulsars pass through the interstellar medium that con-
tains free electrons. Assume that the dispersion relation for an em wave
propagating in the interstellar plasma is

v2
φ = ω2/k2 = c2/(1 − ω2

pe/ω
2).

(i) What is the plasma frequency if the mean interstellar electron density
is ne = 104.5 m−3 ?

(ii) Show that the wave group velocity is given by vg = c2/vφ.

(iii) Assuming ω2
pe � ω2 show that the arrival time t(ν) of a signal will be

a function of frequency of the form

t(ν) = Dν−2 + constant

where ν is the frequency in Hz and the “dispersion coefficient” D is
expressible as

D = C
∫

ned


where the integral represents the integral of the electron density along
the propagation path of the radio signal.

(iv) Find the coefficient C

(v) For a particular pulsar it is found that the signal at 100 MHz arrives
2 seconds later than the signal at 200 MHz. What is the value of D
for that pulsar? Given ne as in part (i), what is the distance to the
pulsar?

(vi) What complicating factors are neglected in deriving the above simple
expression for the time delay as a function of frequency?
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Plasma Physics C17 1998: Final Examination

Attempt four questions. All are of equal value. Only the first four answers will
be marked. Nominal time allowed is 2 hours.
Show all working and state and justify relevant assumptions.

Question 1 (10 marks)
Attempt three of the following. Answers for each should require at most half

a page.

(a) Show that the pressure for a Maxwellian electron gas is given by p = nkBTe.

(b) Describe electric breakdown with reference to the parameter E/p and the
role of secondary emission.

(c) Discuss the physics of Landau damping of electron plasma waves.

(d) Discuss ambipolar diffusion in an unmagnetized plasma

(e) In terms of the magnetic Reynold’s number, explain “Frozen-in” magnetic
fields and resistive diffusion.

(f) Describe the Boltzmann equation and its relation to distribution functions
and their moments.

(g) Describe Debye shielding and the relationship between the plasma frequency
and Debye length.

Question 2 (10 marks)

(a) The distance between electrons in a plasma is of order n−1/3
e . Show that

the potential energy of electrons that are this close is much less than their
kinetic energy provided neλ

3
D >> 1. What is the significance of this condi-

tion?

(b) Use the parallel component (parallel to B) of the equilibrium equation of
motion for electrons in the absence of collisions to show that the number
density for Maxwellian electrons at temperature Te in an electric potential
φ is given by the Boltzmann relation:

ne = n0 exp(eφ/kBTe).

(c) Suppose a small varying electric potential φ = φ1 sin kx is created in an
initially uniform neutral plasma (eφ1 � kBTe). Show that the electrons
will come to equilibrium with ne(x) = n0 + ne1 sin kx where ne1/n0 =
eφ1/kBTe � 1. Using Poisson’s equation, show that the ion density will
be given by ni(x) = n0 + ni1 sin kx with (ni1 − ne1)/ne1 = k2λ2

D. Explain
this result.
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Question 3 (10 marks)

(a) Using the collisionless equation of motion for a speces of charge q in a plasma
with uniform electric and magnetic fields, show that the particles have drift
velocity

vD =
E×B

B2
− ∇p×B

qnB2
.

(b) With the aid of diagrams, show the origin of the E/B drift and explain why
it is independent of species charge and mass.

(c) Show that for a neutral plasma consisting of electrons and singly charged
ions, the diamagnetic drift results in a current flow jD = (B×∇p)/B2.
Explain how this current, which is not due to a guiding centre drift can
arise.

Question 4 (10 marks) Consider a plasma cylinder of radius a with uniform axial
vacuum magnetic field B0. Assume the plasma has a parabolic radial pressure
profile p = p0(1 − r2/a2).

(a) What is maximum value of p0?

(b) Using this value of p0 and Ampere’s law, obtain an expression for the mag-
netic field B(r) and plot it on a graph for r < a and r > a.

(c) What is the diamagnetic current density jD(r) ?

(d) Obtain an expression for the associated ∇B and curvature drifts.

(e) Show that | v∇B(r) | / | vD(r) | is in the ratio of the kinetic and magnetic
pressures.

Question 5 (10 marks) The dispersion relation for low frequency magnetohy-
drodynamic waves in a magnetized plasma was derived in lectures as

−ω2u1 + (V 2
S + V 2

A)(k.u1)k + (k.V A)[(k.V A)u1 − (V A.u1)k − (k.u1)V A] = 0

where u1 is the perturbed fluid velocity, k is the propagataion wavevector and
V A = B0/(µ0ρ0)

1/2 is a velocity vector in the direction of the magnetic field with
magnitude equal to the Alfvén speed and VS is the sound speed.

(a) Derive the following dispersion relations:

vφ =
ω

k
= (V 2

S + V 2
A)1/2 for k.V A = 0 (10.2)
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vφ = VS for k ‖ V A and u1 ‖ V A

vφ = VA for k ‖ V A and u1.V A = 0

(10.3)

and identify the wave modes.

(b) Using

∂B1

∂t
−∇×(u1×B0) = 0

E1 + u1×B = 0

and assuming plane wave propagation so that ∂
∂t

→ −iω and ∇× → ik×,
make a sketch showing the relation between the perturbed quantities u1,
E1, B1 and k and B0 for wave propagation perpendicular to B0. What is
the nature of this wave?

Question 6 (10 marks)

(a) Plot the wave phase velocity as a function of frequency for plasma waves
propagating along the direction of the magnetic field B, identifying cutoffs
and resonances for both electromagnetic and electrostatic wave modes.

(b) Starting with the dispersion relation for L and R waves in the form n2 =
S ± D, show that the phase velocity for both waves is given by

v2
φ =

V 2
A

1 + V 2
A/c2

in the low frequency limit. HINT: You must consider both ions and elec-
trons.
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THE AUSTRALIAN NATIONAL

UNIVERSITY

First Semester Examination 1999

PHYSICS C17

PLASMA PHYSICS

Writing period 2 hours duration
Study period 15 minutes duration
Permitted materials: Calculators

Attempt four questions. All are of equal value.
Show all working and state and justify relevant assumptions.

Question 1 (10 marks)
Attempt three of the following. Answers for each should require at most half a
page.

(a) Discuss the relationship between moments of the particle distribution func-
tion f and moments of the Boltzmann equation. Draw a contour plot of
f(vx, vy) for an anisotropic electron velocity distribution and for a beam of
electrons propagating in the x direction.

(b) Describe electric breakdown with reference to the parameter E/p and the
role of secondary emission.

(c) Describe the physics of Landau damping of electron plasma waves.

(d) Discuss the role of Coulomb collisions for diffusion in a magnetized plasma.

(e) Discuss magnetic mirrors with reference to the adiabatic invariance of the
orbital magnetic moment µ.

(g) Describe Debye shielding and the relationship between the plasma frequency
and Debye length.

Question 2 (10 marks)
Low frequency ion oscillations: Let n0 be the equilibrium number density of

singly charged ions and electrons and assume a one-dimensional harmonic pertur-
bation of the form φ̃ = φ exp [i(kx − ωt)]. We assume the plasma is collisionless
and that the ion temperature is small and can be neglected.
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(a) Show that the perturbed ion velocity is given by

vi = (ek/miω)φ

where φ is the electric potential perturbation.

(b) From the equation of continuity, show that the perturbation charge density
of the ions is obtained as (n0e

2k2/miω
2)φ .

(c) Assume that the ion oscillations are so slow that the electrons remain in a
Maxwell-Boltzmann distribution. If eφ/kBTe � 1, show that the perturbed
charge density of the electrons is given by −(n0e

2/kBTe)φ.

(d) Use Poisson’s equation to deduce the following dispersion relation:

k2 = (n0e
2/miε0ω

2)k2 − n0e
2/kBTeε0

(e) Recast the dispersion relation in the following form:

ω2 = ω2
pi/(1 + 1/k2λ2

D).

Discuss the low and high-k limits and compare with the Bohm-Gross dis-
persion relation for electron plasma waves.

Question 3 (10 marks)

(a) Using the steady-state force balance equation (ignore the convective deriva-
tive) show that the particle flux Γ = nu for electrons and singly charged
ions in a fully ionized unmagnetized plasma is given by:

Γj = nuj = ±µjnE − Dj∇n

with mobility µ =| q | /mν where ν is the electron-ion collision frequency
and diffusion coefficient D = kBT/mν.

(b) Show that the diffusion coefficient can be expressed as D ∼ λ2
mfp/τ where

λmfp is the mean free path between collisions and τ is the collision time.

(c) Show that the plasma resistivity is given approximately by η = meν/ne2.

(d) In the presence of a magnetic field, the mean perpedicular velocity of parti-
cles across the field is given by

u⊥ = ±µ⊥E − D⊥
∇n

n
+

uE + uD

1 + ν2/ω2
c

with uE = E×B/B2, uD = −∇p×B/qnB2 and where µ⊥ = µ/(1 +ω2
cτ

2)
and D⊥ = D/(1 + ω2

cτ
2). Discuss the scaling with ν of each of the four

terms in the expression for u⊥.



Past exam papers 201

Question 4 (10 marks)

(a) Show that the drift speed of a charge q in a toroidal magnetic field can be
written as

vT = 2kBT/qBR

where R is the radius of curvature of the field. (Hint: Consider both gra-
dient and curvature drifts)

(b) Compute the value of vT for a plasma at a temperature of 10 keV, a magnetic
field strength of 2 T and a major radius R = 1 m.

(c) Compute the time required by a charge to drift across a toroidal container
of minor radius 1 m.

(d) Suppose an electric field is applied perpendicular to the plane of the torus.
Describe what happens.

Question 5 (10 marks)

(a) Show that the MHD force balance equation ∇p = j×B requires both j and
B to lie on surfaces of constant pressure.

(b) Using Ampere’s law and MHD force balance, show that

∇
(
p +

B2

2µ0

)
=

1

µ0
(B.∇)B

and discuss the meaning of the various terms.

(c) A straight current carrying plasma cylinder (linear pinch) is subject to a
range of instabilities (sausage, kink etc.). These can be suppressed by
providing an axial magnetic field Bz that stiffens the plasma through the
additional magnetic pressure B2

z/2µ0 and tension against bending. Consider
a local constriction dr in the radius r of the plasma column. Assuming that
the longitudinal magnetic flux Φ through the cross-section of the cylinder
remains constant during the compression (dΦ = 0), show that the axial
magnetic field strength is increased by an amount dBz = −2Bzdr/r.

(d) Show that the internal magnetic pressure increases by an amount dpz =
BzdBz/µ0 = −(2B2

z/µ0)dr/r. [The last step uses the result obtained in
(c)].

(e) By Ampere’s law we have for the azimuthal field component rBθ(r) = con-
stant. Show that the change in azimuthal field strength due the compression
dr is dBθ = −Bθdr/r and that the associated increase in external azimuthal
magnetic pressure is dpθ = −(B2

θ/µ0)dr/r.
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(f) Show that the plasma column is stable against sausage distortion provided
B2

z > B2
θ/2.

Question 6 (10 marks)

(a) Plot the wave phase velocity as a function of frequency for plasma waves
propagating perpendicular to the magnetic field B, identifying cutoffs and
resonances for both ordinary and extraordinary modes.

(b) Using the matrix form of the wave dispersion relation




S − n2
z −iD nxnz

iD S − n2
x − n2

z 0
nxnz 0 P − n2

x






Ex

Ey

Ez


 = 0

show that the polarization state for the extraordinary wave is given by

Ex/Ey = iD/S.

Using a diagram, show the relative orientations of B, k and E for this
wave.
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THE AUSTRALIAN NATIONAL

UNIVERSITY

First Semester Examination 2000

PHYSICS C17

PLASMA PHYSICS

Writing period 2 hours duration
Study period 15 minutes duration
Permitted materials: Calculators

Attempt four questions. All are of equal value.
Show all working and state and justify relevant assumptions.

Question 1 (10 marks)
Attempt three of the following. Answers for each should require at most half a
page.

(a) Discuss the relationship between the Boltzmann equation, the electron and
ion equations of motion and the single fluid force balance euqation.

(b) Describe electric breakdown with reference to the parameter E/p and the
role of secondary emission.

(c) Discuss the physical meaning of the Boltzmann relation. Use diagrams to
aid your explanation.

(d) Discuss the origin of plasma diamagnetism and its implications for magnetic
plasma confinement.

(e) Draw a Langmuir probe I-V characteristic indicating the saturation currents,
plasma potential and floating potential. How can the characteristic be used
to estimate temperature?

(f) Describe Debye shielding and the relationship between the plasma frequency
and Debye length.
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Question 2 (10 marks)

(a) Consider two infinite, perfectly conducting plates A1 and A2 occupying the
planes y = 0 and y = d respectively. An electron enters the space between
the plates through a small hole in plate A1 with initial velocity v towards
plate A2. A potential difference V between the plates is such as to decelerate
the electron. What is the minimum potential difference to prevent the
electron from reaching plate A2.

(b) Suppose the region between the plates is permeated by a uniform magnetic
field B parallel to the plate surfaces (imagine it as pointing into the page).
A proton appears at the surface of plate A1 with zero initial velocity. As
before, the potential V between the plates is such as to accelerate the
proton towards plate A2. What is the minimum value of the magnetic field
B necessary to prevent the proton from reaching plate B? Sketch what you
think the proton trajectory might look like. (HINT: Energy considerations
may be useful).

Question 3 (10 marks)

(a) Using the equilibrium force balance equation for electrons (assume ions are
relatively immobile) show that the conductivity of an unmagnetized plasma
is given by

σ0 =
ne2

meν
(10.4)

(b) What is the dependence of the conductivity on electron temperature and
density in the fully ionized case?

(c) When the plasma is magnetized, the Ohm’s law for a given plasma species
(electrons or ions) becomes j = σ0(E+u×B) where j = nqu is the current
density. Show that the familiar E×B drift is recovered when the collision
frequency becomes very small.

(d) If E is at an angle to B, there will be current flow components both parallel
and perpendicular to B, If ui is different from ue, there is also a nett
Hall current j⊥ = en(ui⊥ − ue⊥) that flows in the direction E×B. To
conveniently describe all these currents, the Ohm’s law can equivalently be
expressed by the tensor relation j =

↔
σ E with conductivity tensor given by

↔
σ=




σ⊥ −σH 0
σH σ⊥ 0
0 0 σ‖


 (10.5)
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where

σ⊥ = σ0
ν2

ν2 + ω2
c

σH = σ0
∓νωc

ν2 + ω2
c

σ‖ = σ0 =
ne2

mν

Explain the collision frequency dependence of the perpendicular and Hall
conductivities.

Question 4 (10 marks) Answer either part (a) or part (b)

(a) Consider the two sets of long and straight current carrying conductors shown
in confurations A and B of Figure 1.

(i) Sketch the magnetic field line configuration for each case.

(ii) Describe the particle guiding centre drifts in each case, with particular em-
phasis on the conservation of the first adiabatic moment.

(iii) Charge separation will occur due to the magnetic field inhomogeneity. This
in turn establishes an electric field. Comment on the confining properties
(or otherwise) of this electric field.

Configuration A Configuration B

Figure 10.1: Conductors marked with a cross carry current into the page (z
direction), while the dots indicate current out of the page.

(b) In a small experimental plasma device, a toroidal B-field is produced by
uniformly winding 120 turns of conductor around a toroidal vacuum vessel and



206

passing a current of 250A through it. The major radius of the torus is 0.6m.
A plasma is produced in hydrogen by a radiofrequency heating field. The elec-
trons and ions have Maxwellian velocity distribution functions at temperatures
80eV and 10eV respectively. The plasma density at the centre of the vessel is
1016 m−3.

(i) Use Ampere’s law around a toroidal loop linking the winding to calculate
the vacuum field on the axis of the torus.

(ii) What is the field on axis in the presence of the plasma?

(iii) Calculate the total drift for both ions and electrons at the centre of the
vessel and show the drifts on a sketch.

(iv) Explain how these drifts are compensated when a toroidal current is induced
to flow.

(v) The toroidal current produces a poloidal field. The combined fields result
in helical magnetic field lines that encircle the torus axis. For particles not
on the torus axis and which have a high parallel to perpendicular velocity
ratio the projected guiding centre motion executes a rotation in the poloidal
plane (a vertical cross-section of the torus) as it moves helically along a field
line. What happens to particles that have a high perpendicular to parallel
velocity ratio?

Question 5 (10 marks) There is a standard way to check the relative importance
of terms in the single fluid MHD equations. For space derivatives we choose a
scale length L such that we can write ∂u/∂x ∼ u/L. Similarly we choose a
time scale τ such that ∂u/∂t ∼ u/τ . So ∇×E = ∂B/∂t becomes E/L ∼ B/τ .
Introduce velocity V = L/τ so that E ∼ BV .

(a) Examine the single fluid momentum equation.

ρ
∂u

∂t
= j×B −∇p (10.6)

Show that the terms are in the ratio

nmi
V

τ
: jB :

nmev
2
the

L
or 1 :

jBτ

nmiV
:

me

mi

v2
the

V 2
(10.7)

When the plasma is cold, show that this suggests V ∼ jBτ/nmi

(b) Examine the generalized Ohm’s law:

me

ne2

∂j

∂t
= E + u×B − 1

ne
j×B +

1

ne
∇pe − ηj (10.8)

Show that the terms are in the ratio

1

ωceωciτ 2
: 1 : 1 :

1

ωciτ
:

1

ωceτ

v2
the

V 2
:

νei

ωceωciτ
(10.9)
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(c) Which terms of the Ohm’s law can be neglected if

(i) τ � 1/ωci

(ii) τ ≈ 1/ωci

(iii) τ ≈ 1/ωce

(iv) τ � 1/ωce

When can the resistive term ηj be dropped?

Question 6 (10 marks)
Electromagnetic wave propagation in an unmagnetized plasma. Consider

an electromagnetic wave propagating in an unbounded, unmagnetized uniform
plasma of equilibrium density n0. We assume the bulk plasma velocity is zero
(v0 = 0) but allow small drifts v1 to be induced by the one-dimensional harmonic
electric field perturbation E = E1 exp [i(kx − ωt)] that is transverse to the wave
propagation direction.

(a) Assuming the plasma is also cold (∇p = 0) and collisionless, show that the
momentum equations for electrons and ions give

n0mi(−iωvi1) = n0eE1

n0me(−iωve1) = −n0eE1

(b) The ion motions are small and can be neglected (why?). Show that the re-
sulting current density flowing in the plasma due to the imposed oscillating
wave electric field is given by

j1 = en0(vi1 − ve1) ≈ i
n0e

2

meω
E1. (10.10)

(c) Associated with the fluctuating current is a small magnetic field oscillation
which is given by Ampere’s law. Use the differential forms of Faraday’s law
and Ampere’s law (Maxwell’s equations) to obtain the first order equations
kE1 = ωB1 and ikB1 = µ0j1 − iωµ0ε0E1 linking B1, E1 and j1.

(d) Use these relations to eliminate B1 and j1 to obtain the dispersion relation
for plane electromagnetic waves propagating in a plasma:

k2 =
ω2 − ω2

pe

c2
(10.11)

(d) Sketch the dispersion relation and comment on the physical significance of
the dispersion near the region ω = ωpe.
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THE AUSTRALIAN NATIONAL

UNIVERSITY

First Semester Examination 2001

PHYSICS C17

PLASMA PHYSICS

Writing period 2 hours duration
Study period 15 minutes duration
Permitted materials: Calculators

Attempt four questions. All are of equal value.
Show all working and state and justify relevant assumptions.

Question 1
Attempt three of the following. Answers for each should require at most half a
page.

(a) Discuss the relationship between moments of the particle distribution func-
tion f and moments of the Boltzmann equation. Plot f(v) for a one dimen-
sional drifting Maxwellian distribution, indicating pictorially the meaning
of the three lowest order velocity moments.

(b) Describe electric breakdown with reference to the parameter E/p and the
role of secondary emission.

(c) Discuss the physical meaning of the Boltzmann relation. Use diagrams to
aid your explanation.

(d) Discuss the origin of plasma diamagnetism and its implications for magnetic
plasma confinement.

(e) Elaborate the role of Coulomb collisions for diffusion in a magnetized plasma.

(f) Discuss magnetic mirrors with reference to the adiabatic invariance of the
orbital magnetic moment µ.

(g) Describe Debye shielding and the relationship between the plasma frequency
and Debye length.



Past exam papers 209

Question 2
Consider an axisymmetric cylindrical plasma with E = Er̂, B = Bẑ and

∇pi = ∇pe = r̂∂p/∂r. If we negelct (v.∇)v, the steady state two-fluid momentum-
balance equations can be written in the form

en(E + ui×B) −∇pi − e2n2η(ui − ue) = 0

−en(E + ue×B) −∇pe + e2n2η(ui − ue) = 0

(a) From the θ̂ components of these equations, show that uir = uer.

(b) From the r̂ components, show that ujθ = uE + uDj (j = i, e).

(c) Find an expression for uir showing that it does not depend on E.

Question 3
The induced emf at the terminals of a wire loop that encircles a plasma

measures the rate of change of magnetic flux expelled by the plasma. You are
given the following parameters:
Vacuum magnetic field strength - 1 Tesla
Number of turns on the diamagnetic loop - N = 75
Radius of the loop - aL = 0.075m
Plasma radius - a = .05m.
Given the observed diamagnetic flux loop signal shown below, calculate the
plasma pressure as a function of time. If the temperature of the plasma is con-
stant at 1 keV, what is the plasma density as a function of time? (HINT: use
Faraday’s law relating the emf to the time derivative of the magnetic flux)

2 4 6 8 10

12 14 16

Time (µs)

1.0

-1.0

Volts

Figure 10.2: Magnetic flux loop signal as a function of time.
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Question 4
An infinite straight wire carries a constant current I in the +z direction. At

t = 0 an electron of small gyroradius is at z = 0 and r = r0 with v⊥0 = v‖0 (⊥
and ‖ refer to the direction relative to the magnetic field.)

(a) Calculate the magnitude and direction of the resulting guiding centre drift
velocity.

(b) Suppose the current increases slowly in time in such a way that a constant
electric field is induced in the ±z direction. Indicate on a diagram the
relative directions of I, E, B and vE .

(c) Do v⊥ and v‖ increase, decrease or remain the same as the current increases?
Explain your answer.

Question 5
Magnetic pumping is a means of heating plasmas that is based on the con-

stancy of the magnetic moment µ. Consider a magnetized plasma for which the
magnetic field strength is modulated in time according to

B = B0(1 + ε cos ωt) (10.12)

where ω � ωc and ε � 1. If U⊥ = mv2
⊥/2 = (mv2

x + mv2
y)/2 is the particle

perpendicular kinetic energy (electrons or ions) show that the kinetic energy is
also modulated as

dU⊥
dt

=
U⊥
B

dB

dt
.

We now allow for a collisional relaxation between the perpendicular (U⊥) and
parallel (U‖) kinetic energies modelled according to the coupled equations

dU⊥
dt

=
U⊥
B

dB

dt
− ν

(
U⊥
2

− U‖
)

dU‖
dt

= ν
(

U⊥
2

− U‖
)

where ν is the collision frequency. By suitably combining these equations, one can
calculate the increment ∆U in total kinetic energy during a period ∆t = 2π/ω
to obtain a nett heating rate

∆U

∆t
=

ε2

6

ω2ν

9ν2/4 + ω2
U ≡ αU. (10.13)

This heating scheme is called collisional magnetic pumping. Comment on the
physical reasons for the ν-dependence of α in the cases ω � ν and ω � ν.

Assuming that the plasma is fully ionized (Coulomb collisions), and in the
case ω � ν, show that the heating rate ∆U/∆t decreases as the temperature
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increases. What would happen if the magnetic field were oscillating at frequency
ω = ωc?

Question 6
On a graph of wave frequency ω versus wavenumber k show the dispersion

relations for the ion and electron acoustic waves, and a transverse electromagnetic
wave (ω > ωpe) propagating in an unmagnetized plasma. (HINT: Draw the ion
and electron plasma frequencies and lines corresponding to the electron sound
speed, the ion sound speed and the speed of light.)

Consider the case of electron plasma oscillations in a uniform plasma of density
n0 in the presence of a uniform steady magnetic field B0 = B0k̂. We take the
background electric field to be zero (E0 = 0) and assume the plasma is at rest
u = 0. We shall consider longitudinal electron oscillations having k ‖ E1 where
we take the oscillating electric field perturbation associated with the electron
wave E1 ≡ Eî to be parallel to the x-axis.

Replacing time derivatives by −iω and spatial gradients by ik, and ignoring
pressure gradients and the convective term (u.∇)u, show that for small ampli-
tude perturbations, the electron motion is governed by the linearized mass and
momentum conservation equations and Maxwell’s equation:

−iωn1 + n0ikux = 0 (10.14)

−iωu = −e(E + u×B0) (10.15)

ε0ikE = −en1. (10.16)

Use Eq. (10.15) to show that the x component of the electron motion is given by

ux =
eE/iωm

1 − ω2
c/ω

2
(10.17)

Substituting for ux from the continuity equation and eliminating the density
perturbation using Eq. (10.16), obtain the dispersion relation for the longitudinal
electron plasma oscillation transverse to B:

ω2 = ω2
p + ω2

c . (10.18)

Why is the oscillation frequency greater than ωp? By expressing the ratio
ux/uy in terms of ω and ωc show that the electron trajectory is an ellipse elongated
in the x direction.
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APPENDIX: A Glossary of Useful Formulae

Chapter 1: Basic plasma phenomena

ωpe =

√
e2ne

ε0me

fpe � 9
√

ne(Hz)

λD =

√
ε0kBTe

nee2

ni

n
� 2.4 ××1021 T

3
2

e

ni

exp
−Ui

kBT

Chapter 2: Kinetic theory

∂f

∂t
+v.∇r.f+

q

m
(E+v×B).∇v.f =

(
∂f

∂t

)
coll

Γ = nv̄

j = qnv̄

p =
2

3
nŪr

fM(v) = A exp(
−mv2

2kBT
) = A exp (−v2/v2

th)

Ūr(Maxwellian) ≡ EAv =
1

2
kBT (1 − D)

1 eV � 11, 600 K

vrms =

√
3kBT

m

vth =

√
2kBT

m

pj = njkBTj

ne = ne0 exp

(
eφ

kBTe

)

λmfp =
1

nσ

τ =
λmfp

v
ν = nσv

b0 =
2qq0

4πε0mv2

lnΛ = ln〈λD

b0
〉

σei
coulomb � Z2e4 ln Λ

2πε2
0m

2
ev

4
e

δEei ∼ 4Eeme

mi

Pei = −mene(ue − ui)

τei

Chapter 2: Fluid and Maxwell’s equations

σ = niqi + neqe

j = niqiui + neqeue

∂nj

∂t
+ ∇.(njuj) = 0

mjnj

[
∂uj

∂t
+ (uj.∇)uj

]
= qjnj(E + uj×B) −∇pj + Pcoll
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pj = Cjn
γj

j

∇.E =
σ

ε0

∇×E = −∂B

∂t
∇.B = 0

∇×B = µ0j + µ0ε0
∂E

∂t

Chapter 3: Gaseous Electronics

Γj = nuj = ±µjnE − Dj∇n

µ =
|q |
mν

D =
kBT

mν
E = ηj

η =
νeime

nee2

η � Ze2√me ln Λ

6
√

3πε2
0(kBTe)3/2

η‖ =
5.2 × 10−5Z ln Λ

T
3
2

e(eV)

I =
I0e

αx

(1 − γeαx)

J =
4

9

√
2e

mi

ε0|φw|3/2

d2

uBohm =

√
kBTe

mi

eφw

kBTe
≈ 1

2
ln
(

2πme

mi

)

Isi � 1

2
n0eA

√
kBTe

mi

Chapter 4: Single Particle Motions

F = m
dv

dt
= q(E + v×B)

ωc ≡ |q|B
m

rL =
v⊥
ωc

µ =
mv2

⊥
2B

vE =
E×B

B2

vF =
1

q

F×B

B2

vR =
mv2

‖
qB2

Rc×B

R2

v∇B = ±1

2
v⊥rL

B×∇B

B2

vP =
1

ωc

Ė

B

j =
↔
σ E

F‖ = −µ∇‖B

v‖ =
[

2

m
(K − µB)

]1/2

Bm

B0
=

1

sin2 θm

q(r) =
dφ

dθ
=

rB0

RBθ
= ε

B0

Bθ
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↔
σ e=

ine2

meω




ω2

ω2 − ω2
ce

−iωceω

ω2 − ω2
ce

0

iωceω

ω2 − ω2
ce

ω2

ω2 − ω2
ce

0

0 0 1




↔
ε= ε0

(↔
I +

i

ε0ω

↔
σ
)

Chapter 5: Magnetized Plasmas

u⊥ =
E×B

B2
+

−∇p×B

qnB2

jD = (kBTi + kBTe)
B×∇n

B2

u⊥ = ±µ⊥E − D⊥
∇n

n
+

uE + uD

1 + ν2/ω2
c

µ⊥ =
µ

1 + ω2
cτ

2

D⊥ =
D

1 + ω2
cτ

2

↔
σ=


 σ⊥ −σH 0

σH σ⊥ 0
0 0 σ‖




σ⊥ = σ0
ν2

ν2 + ω2
c

σH = σ0
∓νωc

ν2 + ω2
c

σ‖ = σ0 =
ne2

mν

D⊥ =
η⊥
∑

nskBTs

B2

Chapter 5: Single Fluid Equations

ρ
∂u

∂t
= j×B −∇p + ρg

E + u×B = ηj
∂ρ

∂t
+ ∇.(ρu) = 0

∂σ

∂t
+ ∇.j = 0

∇×E = −∂B

∂t
∇×B = µ0j

p = Cnγ

Chapter 6: Magnetohydrodynamics

∇
(
p +

B2

2µ0

)
=

1

µ0
(B.∇)B

∂B

∂t
=

η

µ0
∇2B + ∇×(u×B)
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RM =
µ0vL

η

Chapter 7, 8, 9: Waves

vg =
dω

dk

VA =

(
B2

µ0ρ

)/2

VS =

(
γekBTe + γikBTi

mi

)1/2

vφ =
ω

k
=

c

(1 − ω2
pe/ω

2)1/2

ω2 = ω2
pe +

3kBT

m
k2

n×(n×E)+
↔
K .E = 0

n =
c

ω
k

n =|n |= ck/ω = c/vφ

↔
K=

↔
ε /ε0 =




S −iD 0
iD S 0
0 0 P




S = 1 −∑
i,e

ω2
p

ω2 − ω2
c

D =
∑
i,e

± ω2
pωc

ω(ω2 − ω2
c )

P = 1 −∑
i,e

ω2
p

ω2

R = S + D Right

L = S − D Left

S = (R + L)/2 Sum

D = (R − L)/2 Diff

P Plasma

tan2 θ =
P (n2 − L)(n2 − R)

(n2 − P )(RL − n2S)

(
c2

v2
φ

)
L
R

= 1 − ω2
pe

ω(ω ± ωce)
− ω2

pi

ω(ω ∓ ωci)

ω0L =
[
−ωce + (ω2

ce + 4ω2
pe)

1/2
]
/2

ω0R =
[
ωce + (ω2

ce + 4ω2
pe)

1/2
]
/2

n2 =
c2

v2
φ

=
(ω2 − ω2

0L)(ω2 − ω2
0R)

ω2(ω2 − ω2
UH)

ωUH = (ω2
pe + ω2

ce)
1/2

ωLH ≈ (ωciωce)
1/2

n2 =
c2

v2
φ

=
(ω2 − ω2

0L)(ω2 − ω2
0R)

ω2(ω2 − ω2
UH)

Useful Mathematical Identities

A.(B×C) = B.(C×A) = C.(A×B)

(A×B)×C = B(C.A) − A(C.B)

∇.(φA) = A.∇φ + φ∇.A

∇×(φA) = ∇φ×A + φ∇×A

A×(∇×B) = ∇(A.B) − (A.∇)B

− (B.∇)A − B×(∇×A)

(A.∇)A = ∇(
1

2
A2) − A×(∇×A)

∇.(A×B) = B.(∇×A) − A.(∇×B)

∇×(A×B) = A(∇.B) − B(∇.A)

+ (B.∇)A − (A.∇)B
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∇×(∇×A) = ∇(∇.A) − (∇.∇)A

∇×∇φ = 0

∇.(∇×A) = 0∫ ∞

−∞
v2 exp (−av2)dv =

1

2

√
π

a3

Cylindrical coordinates

∇φ =
∂φ

∂r
r̂ +

1

r

∂φ

∂θ
θ̂ +

∂φ

∂z
ẑ

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2

∇.A =
1

r

∂

∂r
(rAr)+

1

r

∂Aθ

∂θ
+

∂Az

∂z

∇×A =

(
1

r

∂Az

∂θ
− ∂Aθ

∂z

)
r̂ +

(
∂Ar

∂z
− ∂Az

∂r

)
θ̂

+

[
1

r

∂

∂r
(rAθ) − 1

r

∂Ar

∂θ

]
ẑ


