Past Assame papershe ion oscillations are so slow that the electrons remain in a Maxwell-Boltzmann distribution. If $e\phi/k_{\rm B}T_{\rm e}\ll 1$, show that the perturbed charge density of the electrons is given by $-(n_0e^2/k_{\rm B}T_{\rm e})\phi$.

(d) Use Poisson's equation to deduce the following dispersion relation:

$$k^2 = (n_0 e^2 / m_i \varepsilon_0 \omega^2) k^2 - n_0 e^2 / k_B T_e \varepsilon_0$$

(e) Recast the dispersion relation in the following form:

$$\omega^2 = \omega_{\rm pi}^2 / (1 + 1/k^2 \lambda_{\rm D}^2).$$

Discuss the low and high-k limits and compare with the Bohm-Gross dispersion relation for electron plasma waves.

Question 3 (10 marks)

(a) Using the steady-state force balance equation (ignore the convective derivative) show that the particle flux $\Gamma = n\mathbf{u}$ for electrons and singly charged ions in a fully ionized unmagnetized plasma is given by:

$$\Gamma_j = n\boldsymbol{u}_j = \pm \mu_j n\boldsymbol{E} - D_j \nabla n$$

with mobility $\mu = |q|/m\nu$ where ν is the electron-ion collision frequency and diffusion coefficient $D = k_{\rm B}T/m\nu$.

- (b) Show that the diffusion coefficient can be expressed as $D \sim \lambda_{\rm mfp}^2/\tau$ where $\lambda_{\rm mfp}$ is the mean free path between collisions and τ is the collision time.
- (c) Show that the plasma resistivity is given approximately by $\eta = m_{\rm e} \nu / n e^2$.
- (d) In the presence of a magnetic field, the mean perpedicular velocity of particles across the field is given by

$$\boldsymbol{u}_{\perp} = \pm \mu_{\perp} \boldsymbol{E} - D_{\perp} \frac{\nabla n}{n} + \frac{\boldsymbol{u}_E + \boldsymbol{u}_D}{1 + \nu^2 / \omega_c^2}$$

with $\mathbf{u}_E = \mathbf{E} \times \mathbf{B}/B^2$, $\mathbf{u}_D = -\nabla p \times \mathbf{B}/qnB^2$ and where $\mu_{\perp} = \mu/(1 + \omega_c^2 \tau^2)$ and $D_{\perp} = D/(1 + \omega_c^2 \tau^2)$. Discuss the scaling with ν of each of the four terms in the expression for \mathbf{u}_{\perp} .

Question 4 (10 marks)

(a) Show that the drift speed of a charge q in a toroidal magnetic field can be written as

$$v_T = 2k_BT/qBR$$

where R is the radius of curvature of the field. (Hint: Consider both gradient and curvature drifts)

(b) Compute the value of v_T for a plasma at a temperature of 10 keV, a magnetic field strength of 2 T and a major radius R = 1 m.

- (c) Compute the time required by a charge to drift across a toroidal container of minor radius 1 m.
- (d) Suppose an electric field is applied perpendicular to the plane of the torus. Describe what happens.

Question 5 (10 marks)

- (a) Show that the MHD force balance equation $\nabla p = \mathbf{j} \times \mathbf{B}$ requires both \mathbf{j} and \mathbf{B} to lie on surfaces of constant pressure.
- (b) Using Ampere's law and MHD force balance, show that

$$\nabla \left(p + \frac{B^2}{2\mu_0} \right) = \frac{1}{\mu_0} (\boldsymbol{B}.\nabla) \boldsymbol{B}$$

and discuss the meaning of the various terms.

- (c) A straight current carrying plasma cylinder (linear pinch) is subject to a range of instabilities (sausage, kink etc.). These can be suppressed by providing an axial magnetic field B_z that stiffens the plasma through the additional magnetic pressure $B_z^2/2\mu_0$ and tension against bending. Consider a local constriction dr in the radius r of the plasma column. Assuming that the longitudinal magnetic flux Φ through the cross-section of the cylinder remains constant during the compression ($d\Phi = 0$), show that the axial magnetic field strength is increased by an amount $dB_z = -2B_z dr/r$.
- (d) Show that the internal magnetic pressure increases by an amount $\mathrm{d}p_z = B_z \mathrm{d}B_z/\mu_0 = -(2B_z^2/\mu_0)\mathrm{d}r/r$. [The last step uses the result obtained in (c)].
- (e) By Ampere's law we have for the azimuthal field component $rB_{\theta}(r) = \text{constant}$. Show that the change in azimuthal field strength due the compression dr is $dB_{\theta} = -B_{\theta}dr/r$ and that the associated increase in external azimuthal magnetic pressure is $dp_{\theta} = -(B_{\theta}^2/\mu_0)dr/r$.
- (f) Show that the plasma column is stable against sausage distortion provided $B_z^2 > B_\theta^2/2$.

Question 6 (10 marks)

- (a) Plot the wave phase velocity as a function of frequency for plasma waves propagating perpendicular to the magnetic field \boldsymbol{B} , identifying cutoffs and resonances for both ordinary and extraordinary modes.
- (b) Using the matrix form of the wave dispersion relation

$$\begin{pmatrix} S - n_z^2 & -iD & n_x n_z \\ iD & S - n_x^2 - n_z^2 & 0 \\ n_x n_z & 0 & P - n_x^2 \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0$$

show that the polarization state for the extraordinary wave is given by

$$E_x/E_y = iD/S$$
.

Using a diagram, show the relative orientations of B, k and E for this wave.

Past example Dapart STRALIAN NATIONAL UNIVERSITY

First Semester Examination 2000

PHYSICS C17 PLASMA PHYSICS

Writing period 2 hours duration Study period 15 minutes duration Permitted materials: Calculators

Attempt four questions. All are of equal value. Show all working and state and justify relevant assumptions.

Question 1 (10 marks)

Attempt three of the following. Answers for each should require at most half a page.

- (a) Discuss the relationship between the Boltzmann equation, the electron and ion equations of motion and the single fluid force balance equation.
- (b) Describe electric breakdown with reference to the parameter E/p and the role of secondary emission.
- (c) Discuss the physical meaning of the Boltzmann relation. Use diagrams to aid your explanation.
- (d) Discuss the origin of plasma diamagnetism and its implications for magnetic plasma confinement.
- (e) Draw a Langmuir probe I-V characteristic indicating the saturation currents, plasma potential and floating potential. How can the characteristic be used to estimate temperature?
- (f) Describe Debye shielding and the relationship between the plasma frequency and Debye length.

- (a) Consider two infinite, perfectly conducting plates A_1 and A_2 occupying the planes y = 0 and y = d respectively. An electron enters the space between the plates through a small hole in plate A_1 with initial velocity v towards plate A_2 . A potential difference V between the plates is such as to decelerate the electron. What is the minimum potential difference to prevent the electron from reaching plate A_2 .
- (b) Suppose the region between the plates is permeated by a uniform magnetic field B parallel to the plate surfaces (imagine it as pointing into the page). A proton appears at the surface of plate A_1 with zero initial velocity. As before, the potential V between the plates is such as to accelerate the proton towards plate A_2 . What is the minimum value of the magnetic field B necessary to prevent the proton from reaching plate B? Sketch what you think the proton trajectory might look like. (HINT: Energy considerations may be useful).

Question 3 (10 marks)

(a) Using the equilibrium force balance equation for electrons (assume ions are relatively immobile) show that the conductivity of an unmagnetized plasma is given by

$$\sigma_0 = \frac{ne^2}{m_e \nu} \tag{10.4}$$

- (b) What is the dependence of the conductivity on electron temperature and density in the fully ionized case?
- (c) When the plasma is magnetized, the Ohm's law for a given plasma species (electrons or ions) becomes $\mathbf{j} = \sigma_0(\mathbf{E} + \mathbf{u} \times \mathbf{B})$ where $\mathbf{j} = nq\mathbf{u}$ is the current density. Show that the familiar $\mathbf{E} \times \mathbf{B}$ drift is recovered when the collision frequency becomes very small.
- (d) If E is at an angle to B, there will be current flow components both parallel and perpendicular to B, If u_i is different from u_e , there is also a nett Hall current $j_{\perp} = en(u_{i\perp} u_{e\perp})$ that flows in the direction $E \times B$. To conveniently describe all these currents, the Ohm's law can equivalently be expressed by the tensor relation $j = \stackrel{\leftrightarrow}{\sigma} E$ with conductivity tensor given by

$$\stackrel{\leftrightarrow}{\sigma} = \begin{pmatrix} \sigma_{\perp} & -\sigma_{H} & 0\\ \sigma_{H} & \sigma_{\perp} & 0\\ 0 & 0 & \sigma_{\parallel} \end{pmatrix} \tag{10.5}$$

where

$$\sigma_{\perp} = \sigma_0 \frac{\nu^2}{\nu^2 + \omega_c^2}$$

$$\sigma_H = \sigma_0 \frac{\mp \nu \omega_c}{\nu^2 + \omega_c^2}$$

$$\sigma_{\parallel} = \sigma_0 = \frac{ne^2}{m\nu}$$

Explain the collision frequency dependence of the perpendicular and Hall conductivities.

Quetstixand propersrks) Answer either part (a) or part (b)

- (a) Consider the two sets of long and straight current carrying conductors shown in confurations A and B of Figure 1.
 - (i) Sketch the magnetic field line configuration for each case.
 - (ii) Describe the particle guiding centre drifts in each case, with particular emphasis on the conservation of the first adiabatic moment.
 - (iii) Charge separation will occur due to the magnetic field inhomogeneity. This in turn establishes an electric field. Comment on the confining properties (or otherwise) of this electric field.

Configuration A		Configuration B	
\otimes	\odot	\otimes	8
0	\otimes	\odot	\odot

Figure 10.1: Conductors marked with a cross carry current into the page (z direction), while the dots indicate current out of the page.

(b) In a small experimental plasma device, a toroidal B-field is produced by uniformly winding 120 turns of conductor around a toroidal vacuum vessel and passing a current of 250A through it. The major radius of the torus is 0.6m.

A plasma is produced in hydrogen by a radiofrequency heating field. The electrons and ions have Maxwellian velocity distribution functions at temperatures 80eV and 10eV respectively. The plasma density at the centre of the vessel is $10^{16} \,\mathrm{m}^{-3}$.

- (i) Use Ampere's law around a toroidal loop linking the winding to calculate the vacuum field on the axis of the torus.
- (ii) What is the field on axis in the presence of the plasma?
- (iii) Calculate the total drift for both ions and electrons at the centre of the vessel and show the drifts on a sketch.
- (iv) Explain how these drifts are compensated when a toroidal current is induced to flow.

(v) The toroidal current produces a poloidal field. The combined fields result in helical magnetic field lines that encircle the torus axis. For particles not on the torus axis and which have a high parallel to perpendicular velocity ratio the projected guiding centre motion executes a rotation in the poloidal plane (a vertical cross-section of the torus) as it moves helically along a field line. What happens to particles that have a high perpendicular to parallel velocity ratio?

Question 5 (10 marks) There is a standard way to check the relative importance of terms in the single fluid MHD equations. For space derivatives we choose a scale length L such that we can write $\partial u/\partial x \sim u/L$. Similarly we choose a time scale τ such that $\partial u/\partial t \sim u/\tau$. So $\nabla \times \mathbf{E} = \partial \mathbf{B}/\partial t$ becomes $E/L \sim B/\tau$. Introduce velocity $V = L/\tau$ so that $E \sim BV$.

(a) Examine the single fluid momentum equation.

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{j} \times \boldsymbol{B} - \nabla p \tag{10.6}$$

Show that the terms are in the ratio

$$nm_{\rm i}\frac{V}{\tau}:jB:\frac{nm_{\rm e}v_{\rm the}^2}{L} \quad {\rm or} \quad 1:\frac{jB\tau}{nm_{\rm i}V}:\frac{m_{\rm e}v_{\rm the}^2}{m_{\rm i}V^2}$$
 (10.7)

When the plasma is cold, show that this suggests $V \sim jB\tau/nm_{\rm i}$

(b) Examine the generalized Ohm's law:

$$\frac{m_{\rm e}}{ne^2} \frac{\partial \mathbf{j}}{\partial t} = \mathbf{E} + \mathbf{u} \times \mathbf{B} - \frac{1}{ne} \mathbf{j} \times \mathbf{B} + \frac{1}{ne} \nabla p_{\rm e} - \eta \mathbf{j}$$
(10.8)

Show that the terms are in the ratio

$$\frac{1}{\omega_{\text{ce}}\omega_{\text{ci}}\tau^2} : 1 : 1 : \frac{1}{\omega_{\text{ci}}\tau} : \frac{1}{\omega_{\text{ce}}\tau}\frac{v_{\text{the}}^2}{V^2} : \frac{\nu_{\text{ei}}}{\omega_{\text{ce}}\omega_{\text{ci}}\tau}$$
(10.9)

- (c) Which terms of the Ohm's law can be neglected if
 - (i) $\tau \gg 1/\omega_{\rm ci}$
 - (ii) $\tau \approx 1/\omega_{ci}$
 - (iii) $\tau \approx 1/\omega_{\rm ce}$
 - (iv) $\tau \ll 1/\omega_{\rm ce}$

When can the resistive term ηj be dropped?

Question 6 (10 marks)

Electromagnetic wave propagation in an unmagnetized plasma. Consider an electromagnetic wave propagating in an unbounded, unmagnetized uniform plasma of equilibrium density n_0 . We assume the bulk plasma velocity is zero ($\mathbf{v}_0 = 0$) but allow small drifts v_1 to be induced by the one-dimensional harmonic electric field perturbation $E = E_1 \exp[i(kx - \omega t)]$ that is transverse to the wave propagation direction.

Past Assaming a plers plasma is also cold ($\nabla p = 0$) and collisionless, show that the momentum equations for electrons and ions give

$$n_0 m_i(-i\omega v_{i1}) = n_0 e E_1$$

$$n_0 m_e(-i\omega v_{e1}) = -n_0 e E_1$$

(b) The ion motions are small and can be neglected (why?). Show that the resulting current density flowing in the plasma due to the imposed oscillating wave electric field is given by

$$j_1 = e n_0 (v_{i1} - v_{e1}) \approx i \frac{n_0 e^2}{m_e \omega} E_1.$$
 (10.10)

- (c) Associated with the fluctuating current is a small magnetic field oscillation which is given by Ampere's law. Use the differential forms of Faraday's law and Ampere's law (Maxwell's equations) to obtain the first order equations $kE_1 = \omega B_1$ and $ikB_1 = \mu_0 j_1 i\omega \mu_0 \varepsilon_0 E_1$ linking B_1 , E_1 and j_1 .
- (d) Use these relations to eliminate B_1 and j_1 to obtain the dispersion relation for plane electromagnetic waves propagating in a plasma:

$$k^2 = \frac{\omega^2 - \omega_{\rm pe}^2}{c^2} \tag{10.11}$$

(d) Sketch the dispersion relation and comment on the physical significance of the dispersion near the region $\omega = \omega_{\rm pe}$.

THE AUSTRALIAN NATIONAL UNIVERSITY

First Semester Examination 2001

PHYSICS C17 PLASMA PHYSICS

Writing period 2 hours duration Study period 15 minutes duration Permitted materials: Calculators

Attempt four questions. All are of equal value. Show all working and state and justify relevant assumptions.

Question 1

Attempt three of the following. Answers for each should require at most half a page.

- (a) Discuss the relationship between moments of the particle distribution function f and moments of the Boltzmann equation. Plot f(v) for a one dimensional drifting Maxwellian distribution, indicating pictorially the meaning of the three lowest order velocity moments.
- (b) Describe electric breakdown with reference to the parameter E/p and the role of secondary emission.
- (c) Discuss the physical meaning of the Boltzmann relation. Use diagrams to aid your explanation.
- (d) Discuss the origin of plasma diamagnetism and its implications for magnetic plasma confinement.
- (e) Elaborate the role of Coulomb collisions for diffusion in a magnetized plasma.
- (f) Discuss magnetic mirrors with reference to the adiabatic invariance of the orbital magnetic moment μ .
- (g) Describe Debye shielding and the relationship between the plasma frequency and Debye length.

Question 2

Consider an axisymmetric cylindrical plasma with $\mathbf{E} = E\hat{\mathbf{r}}$, $\mathbf{B} = B\hat{\mathbf{z}}$ and $\nabla p_i = \nabla p_e = \hat{\mathbf{r}}\partial p/\partial r$. If we negelet $(\mathbf{v} \cdot \nabla)\mathbf{v}$, the steady state two-fluid momentum-balance equations can be written in the form

$$en(\mathbf{E} + \mathbf{u}_{i} \times \mathbf{B}) - \nabla p_{i} - e^{2}n^{2}\eta(\mathbf{u}_{i} - \mathbf{u}_{e}) = 0$$
$$-en(\mathbf{E} + \mathbf{u}_{e} \times \mathbf{B}) - \nabla p_{e} + e^{2}n^{2}\eta(\mathbf{u}_{i} - \mathbf{u}_{e}) = 0$$

(a) From the $\hat{\boldsymbol{\theta}}$ components of these equations, show that $u_{ir} = u_{er}$.

(c) Find an expression for u_{ir} showing that it does not depend on E.

Question 3

The induced emf at the terminals of a wire loop that encircles a plasma measures the rate of change of magnetic flux expelled by the plasma. You are given the following parameters:

Vacuum magnetic field strength - 1 Tesla

Number of turns on the diamagnetic loop - N = 75

Radius of the loop - $a_L = 0.075$ m

Plasma radius - a = .05m.

Given the observed diamagnetic flux loop signal shown below, calculate the plasma pressure as a function of time. If the temperature of the plasma is constant at 1 keV, what is the plasma density as a function of time? (HINT: use Faraday's law relating the emf to the time derivative of the magnetic flux)

Figure 10.2: Magnetic flux loop signal as a function of time.

Question 4

An infinite straight wire carries a constant current I in the +z direction. At t=0 an electron of small gyroradius is at z=0 and $r=r_0$ with $v_{\perp 0}=v_{\parallel 0}$ (\perp and \parallel refer to the direction relative to the magnetic field.)

- (a) Calculate the magnitude and direction of the resulting guiding centre drift velocity.
- (b) Suppose the current increases slowly in time in such a way that a constant electric field is induced in the $\pm z$ direction. Indicate on a diagram the relative directions of \boldsymbol{I} , \boldsymbol{E} , \boldsymbol{B} and \boldsymbol{v}_E .
- (c) Do v_{\perp} and v_{\parallel} increase, decrease or remain the same as the current increases? Explain your answer.

Question 5

Magnetic pumping is a means of heating plasmas that is based on the constancy of the magnetic moment μ . Consider a magnetized plasma for which the magnetic field strength is modulated in time according to

$$B = B_0(1 + \epsilon \cos \omega t) \tag{10.12}$$

where $\omega \ll \omega_c$ and $\epsilon \ll 1$. If $U_{\perp} = mv_{\perp}^2/2 = (mv_x^2 + mv_y^2)/2$ is the particle perpendicular kinetic energy (electrons or ions) show that the kinetic energy is also modulated as

$$\frac{\mathrm{d}U_{\perp}}{\mathrm{d}t} = \frac{U_{\perp}}{B} \frac{\mathrm{d}B}{\mathrm{d}t}.$$

We now allow for a collisional relaxation between the perpendicular (U_{\perp}) and parallel (U_{\parallel}) kinetic energies modelled according to the coupled equations

$$\begin{array}{rcl} \frac{\mathrm{d}U_{\perp}}{\mathrm{d}t} & = & \frac{U_{\perp}}{B}\frac{\mathrm{d}B}{\mathrm{d}t} - \nu\left(\frac{U_{\perp}}{2} - U_{\parallel}\right) \\ \frac{\mathrm{d}U_{\parallel}}{\mathrm{d}t} & = & \nu\left(\frac{U_{\perp}}{2} - U_{\parallel}\right) \end{array}$$

where ν is the collision frequency. By suitably combining these equations, one can calculate the increment ΔU in total kinetic energy during a period $\Delta t = 2\pi/\omega$ to obtain a net heating rate

$$\frac{\Delta U}{\Delta t} = \frac{\epsilon^2}{6} \frac{\omega^2 \nu}{9\nu^2 / 4 + \omega^2} U \equiv \alpha U. \tag{10.13}$$

This heating scheme is called collisional magnetic pumping. Comment on the physical reasons for the ν -dependence of α in the cases $\omega \gg \nu$ and $\omega \ll \nu$.

Assuming that the plasma is fully ionized (Coulomb collisions), and in the case $\omega \gg \nu$, show that the heating rate $\Delta U/\Delta t$ decreases as the temperature increases. What would happen if the magnetic field were oscillating at frequency $\omega = \omega_c$?

Question 6

On a graph of wave frequency ω versus wavenumber k show the dispersion relations for the ion and electron acoustic waves, and a transverse electromagnetic wave ($\omega > \omega_{\rm pe}$) propagating in an unmagnetized plasma. (HINT: Draw the ion and electron plasma frequencies and lines corresponding to the electron sound speed, the ion sound speed and the speed of light.)

Pactorial papers of electron plasma oscillations in a uniform plasma of density n_0 in the presence of a uniform steady magnetic field $\mathbf{B}_0 = B_0 \hat{\mathbf{k}}$. We take the background electric field to be zero ($\mathbf{E}_0 = 0$) and assume the plasma is at rest $\mathbf{u} = 0$. We shall consider longitudinal electron oscillations having $\mathbf{k} \parallel \mathbf{E}_1$ where we take the oscillating electric field perturbation associated with the electron wave $\mathbf{E}_1 \equiv E\hat{\mathbf{i}}$ to be parallel to the x-axis.

Replacing time derivatives by $-i\omega$ and spatial gradients by $i\mathbf{k}$, and ignoring pressure gradients and the convective term $(\mathbf{u} \cdot \nabla)\mathbf{u}$, show that for small amplitude perturbations, the electron motion is governed by the linearized mass and momentum conservation equations and Maxwell's equation:

$$-\mathrm{i}\omega n_1 + n_0 \mathrm{i}k u_x = 0 \tag{10.14}$$

$$-i\omega \boldsymbol{u} = -e(\boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B}_0) \tag{10.15}$$

$$\varepsilon_0 i k E = -e n_1. \tag{10.16}$$

Use Eq. (10.15) to show that the x component of the electron motion is given by

$$u_x = \frac{eE/\mathrm{i}\omega m}{1 - \omega_c^2/\omega^2} \tag{10.17}$$

Substituting for u_x from the continuity equation and eliminating the density perturbation using Eq. (10.16), obtain the dispersion relation for the longitudinal electron plasma oscillation transverse to \mathbf{B} :

$$\omega^2 = \omega_{\rm p}^2 + \omega_{\rm c}^2. \tag{10.18}$$

Why is the oscillation frequency greater than ω_p ? By expressing the ratio u_x/u_y in terms of ω and ω_c show that the electron trajectory is an ellipse elongated in the x direction.

THE AUSTRALIAN NATIONAL UNIVERSITY

First Semester Examination 2002

PHYSICS C17 PLASMA PHYSICS

Writing period 2 hours duration Study period 15 minutes duration Permitted materials: Calculators

Attempt four questions. All are of equal value. Show all working and state and justify relevant assumptions.

Question 1

Discuss, using diagrams where appropriate, **three** of the following issues. Answers for each should require at most half a page.

- (a) Ambipolar diffusion in unmagnetized plasma.
- (b) Electric breakdown. Why is E/p important and what is the role of secondary emission?
- (c) The physics underlying the Boltzmann relation.
- (d) MHD waves that propagate perpendicular and parallel to B.
- (e) The resistivity of weakly and fully ionized unmagnetized plasmas.
- (f) Magnetic mirrors and the role of the invariance of the orbital magnetic moment μ .
- (g) Debye shielding and the relationship between the plasma frequency and Debye length.

Question 2

- (a) Explain using a diagram why the orbit of a particle gyrating in a magnetic field is diamagnetic.
- (b) Given that the magnetic moment of a gyrating particle is $\mu=W_{\perp}/B$ where W_{\perp} is the kinetic energy of the motion perpendicular to the magnetic field of strength B, find an expression for the magnetic moment per unit volume M in a plasma with particle density n and temperature T immersed in a uniform magnetic field.
- (c) Supposing the field inside the plasma to be reduced compared with that outside the plasma B by $\mu_0 M \ll B$, calculate the difference in magnetic pressure $B^2/2\mu_0$ inside the plasma and confirm that the total pressure is constant.

Past Desamb Papers eral terms what happens to maintain pressure balance as the plasma temperature is increased, keeping the total number of particles constant.

Question 3

- (a) With the aid of diagrams, explain why magnetic plasma confinement is not possible in a purely toroidal magnetic field.
- (b) The earth's magnetic field may be approximated as a magnetic dipole out to a few earth radii ($R_E = 6370 \text{km}$). The magnetic field for a dipole can be written approximately as

$$B_r = \frac{\mu_0}{4\pi} \frac{2M\cos\theta}{r^3} \tag{10.19}$$

$$B_{\theta} = \frac{\mu_0}{4\pi} \frac{M \sin \theta}{r^3} \tag{10.20}$$

where θ is the polar angle from the direction of the dipole moment vector, B_r is the magnetic field radial component and B_{θ} is the component orthogonal to B_r . Using the fact that, at one of the magnetic poles $(r = R_E)$, the field has a magnitude of 0.5 Gauss, calculate the earth's dipole moment M.

- (c) Assuming an electron is constrained to move in the earth's magnetic equatorial plane $(v_{\parallel} = 0)$, calculate the guiding centre drift velocity, and determine the time it takes to drift once around the earth at a radial distance r_0 . What is the direction of drift.
- (d) Let there be an isotropic population of 1 eV protons and 30 keV electrons each with density $n = 10^7 \,\mathrm{m}^{-3}$ at $r = 5R_E$ in the equatorial plane. Compute the ring current density in $\mathrm{A/m^2}$ associated with the drift obtained in (c).
- (e) Now assume that the perpendicular kinetic energy equals the parallel kinetic energy at the magnetic equatorial plane. Qualitatively describe the motion of the electron guiding centre.

Question 4

(a) Using the steady-state force balance equation (ignore the convective derivative) show that the particle flux $\Gamma = n\mathbf{u}$ for electrons and singly charged ions in an unmagnetized plasma is given by:

$$\Gamma_j = n\mathbf{u}_j = \pm \mu_j n\mathbf{E} - D_j \nabla n$$

with mobility $\mu = |q|/m\nu$ where ν is the collision frequency and diffusion coefficient $D = k_{\rm B}T/m\nu$.

- (b) Show that the diffusion coefficient can be expressed as $D \sim \lambda_{\rm mfp}^2/\tau$ where $\lambda_{\rm mfp}$ is the mean free path between collisions and τ is the collision time.
- (c) Show that the plasma resistivity is given approximately by $\eta = m_{\rm e} \nu / ne^2$.

(d) In a weakly ionized magnetoplasma, the mean perpendicular velocity of particles across the field is given by

$$\boldsymbol{u}_{\perp} = \pm \mu_{\perp} \boldsymbol{E} - D_{\perp} \frac{\nabla n}{n} + \frac{\boldsymbol{u}_E + \boldsymbol{u}_D}{1 + \nu^2 / \omega_c^2}$$

with $\mathbf{u}_E = \mathbf{E} \times \mathbf{B}/B^2$, $\mathbf{u}_D = -\nabla p \times \mathbf{B}/qnB^2$ and where $\mu_{\perp} = \mu/(1 + \omega_c^2 \tau^2)$ and $D_{\perp} = D/(1 + \omega_c^2 \tau^2)$. Discuss the physical origin of each of these terms and their behaviour in the limit of weak and strong magnetic fields.

Question 5 (10 marks)

The dispersion relation for low frequency magnetohydrodynamic waves in a magnetized plasma was derived in lectures as

$$-\omega^2 u_1 + (V_S^2 + V_A^2)(k \cdot u_1)k + (k \cdot V_A)[(k \cdot V_A)u_1 - (V_A \cdot u_1)k - (k \cdot u_1)V_A] = 0$$

where u_1 is the perturbed fluid velocity, k is the propagataion wavevector and $V_A = B_0/(\mu_0 \rho_0)^{1/2}$ is a velocity vector in the direction of the magnetic field with magnitude equal to the Alfvén speed and V_S is the sound speed.

- (a) Deduce the dispersion relations for waves propagating parallel to the magnetic field and identify the wave modes.
- (b) Using

$$\frac{\partial \mathbf{B}_1}{\partial t} - \nabla \times (\mathbf{u}_1 \times \mathbf{B}_0) = 0$$
$$\mathbf{E}_1 + \mathbf{u}_1 \times \mathbf{B} = 0$$

and assuming plane wave propagation so that $\frac{\partial}{\partial t} \to -i\omega$ and $\nabla \times \to i\mathbf{k} \times$, make a sketch showing the relation between the perturbed quantities \mathbf{u}_1 , \mathbf{E}_1 , \mathbf{B}_1 and \mathbf{k} and \mathbf{B}_0 for the transverse wave propagating along \mathbf{B}_0 .

Question 6 (10 marks)

Consider an electromagnetic wave propagating in an unbounded, em unmagnetized uniform plasma of equilibrium density n_0 . We assume the bulk plasma velocity is zero ($\mathbf{v}_0 = 0$) but allow small drifts v_1 to be induced by the *one-dimensional* harmonic electric field perturbation $E = E_1 \exp[i(kx - \omega t)]$ that is transverse to the wave propagation direction.

(a) Assuming the plasma is also cold ($\nabla p = 0$) and collisionless, show that the momentum equations for electrons and ions give

$$n_0 m_{\mathbf{i}}(-\mathrm{i}\omega v_{i1}) = n_0 e E_1$$

$$n_0 m_{\mathbf{e}}(-\mathrm{i}\omega v_{e1}) = -n_0 e E_1$$

(b) The ion motions are small and can be neglected. Show that the resulting current density flowing in the plasma due to the imposed oscillating wave electric field is given by

$$j_1 = e n_0 (v_{i1} - v_{e1}) \approx i \frac{n_0 e^2}{m_0 \omega} E_1.$$
 (10.21)

PastAssacrate aperts the fluctuating current is a small magnetic field oscillation which is given by Ampere's law. Use the differential forms of Faraday's law and Ampere's law (Maxwell's equations) to obtain the first order equations $kE_1 = \omega B_1$ and $ikB_1 = \mu_0 j_1 - i\omega \mu_0 \varepsilon_0 E_1$ linking B_1 , E_1 and j_1 .

(d) Use these relations to eliminate B_1 and j_1 to obtain the dispersion relation for plane electromagnetic waves propagating in a plasma:

$$k^2 = \frac{\omega^2 - \omega_{\rm pe}^2}{c^2} \tag{10.22}$$

(d) Sketch the dispersion relation and comment on the physical significance of the dispersion near the region $\omega = \omega_{\rm pe}$.

APPENDIX: A Glossary of Useful Formulae

Chapter 1: Basic plasma phenomena

$$\omega_{\rm pe} = \sqrt{\frac{e^2 n_{\rm e}}{\varepsilon_0 m_{\rm e}}}$$

$$\lambda_{\rm D} = \sqrt{\frac{\varepsilon_0 k_{\rm B} T_{\rm e}}{n_{\rm e} e^2}}$$

$$f_{pe} \simeq 9 \sqrt{n_{\rm e}} (\,{\rm Hz})$$

$$\frac{n_i}{n} \simeq 2.4 \times \times 10^{21} \frac{T_{\rm e}^{\frac{3}{2}}}{n_i} \exp{\frac{-U_i}{k_{\rm B} T}}$$

Chapter 2: Kinetic theory

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla}_r \cdot f + \frac{q}{m} (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot \boldsymbol{\nabla}_v \cdot f = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} \qquad n_{\text{e}} = n_{\text{e}0} \exp\left(\frac{e\phi}{k_{\text{B}} T_{\text{e}}}\right)$$

$$\Gamma = n \bar{\boldsymbol{v}} \qquad \qquad \lambda_{\text{mfp}} = \frac{1}{n\sigma} \qquad \qquad \lambda_{\text{mfp}} = \frac{1}{n\sigma} \qquad \qquad \tau = \frac{\lambda_{\text{mfp}}}{v} \qquad \qquad v = n\sigma v \qquad v = n\sigma v \qquad \qquad v = n\sigma v \qquad$$

Chapter 2: Fluid and Maxwell's equations

$$\sigma = n_{i}q_{i} + n_{e}q_{e}$$

$$j = n_{i}q_{i}\boldsymbol{u}_{i} + n_{e}q_{e}\boldsymbol{u}_{e}$$

$$\frac{\partial n_{j}}{\partial t} + \nabla \cdot (n_{j}\boldsymbol{u}_{j}) = 0$$

$$m_{j}n_{j} \left[\frac{\partial \boldsymbol{u}_{j}}{\partial t} + (\boldsymbol{u}_{j} \cdot \nabla)\boldsymbol{u}_{j} \right] = q_{j}n_{j}(\boldsymbol{E} + \boldsymbol{u}_{j} \times \boldsymbol{B}) - \nabla p_{j} + P_{coll}$$

$$p_{j} = C_{j}n_{j}^{\gamma_{j}}$$

$$\nabla \cdot \boldsymbol{E} = \frac{\sigma}{\varepsilon_{0}}$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j} + \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}$$

Chapter 3: Gaseous Electronics

$$\Gamma_{j} = n\boldsymbol{u}_{j} = \pm \mu_{j}n\boldsymbol{E} - D_{j}\nabla n$$

$$\mu = \frac{|q|}{m\nu}$$

$$D = \frac{k_{\mathrm{B}}T}{m\nu}$$

$$\boldsymbol{E} = \eta \boldsymbol{j}$$

$$\eta = \frac{v_{\mathrm{ei}}m_{\mathrm{e}}}{n_{\mathrm{e}}e^{2}}$$

$$I = \frac{I_{0}e^{\alpha x}}{(1 - \gamma e^{\alpha x})}$$

$$J = \frac{4}{9}\sqrt{\frac{2e}{m_{\mathrm{i}}}}\frac{\varepsilon_{0}|\phi_{w}|^{3/2}}{d^{2}}$$

$$u_{\mathrm{Bohm}} = \sqrt{\frac{k_{\mathrm{B}}T_{\mathrm{e}}}{m_{\mathrm{i}}}}$$

$$\eta \simeq \frac{Ze^{2}\sqrt{m_{\mathrm{e}}}\ln\Lambda}{6\sqrt{3}\pi\varepsilon_{0}^{2}(k_{\mathrm{B}}T_{\mathrm{e}})^{3/2}}$$

$$\eta_{\parallel} = \frac{5.2 \times 10^{-5}Z\ln\Lambda}{T_{\mathrm{e(eV)}}^{3/2}}$$

$$I_{\mathrm{si}} \simeq \frac{1}{2}n_{0}eA\sqrt{\frac{k_{\mathrm{B}}T_{\mathrm{e}}}{m_{\mathrm{i}}}}$$

Chapter 4: Single Particle Motions

$$F = m\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

$$\boldsymbol{\sigma}_{c} \equiv \frac{|q|B}{m}$$

$$r_{L} = \frac{v_{\perp}}{\omega_{c}}$$

$$v_{\parallel} = \left[\frac{2}{m}(K - \mu B)\right]^{1/2}$$

$$v_{\parallel} = \frac{mv_{\perp}^{2}}{2B}$$

$$v_{E} = \frac{\boldsymbol{E} \times \boldsymbol{B}}{B^{2}}$$

$$v_{F} = \frac{1}{q}\frac{\boldsymbol{F} \times \boldsymbol{B}}{B^{2}}$$

$$v_{R} = \frac{mv_{\parallel}^{2}}{qB^{2}}\frac{\boldsymbol{R}_{c} \times \boldsymbol{B}}{R^{2}}$$

$$v_{R} = \frac{1}{2}v_{\perp}r_{L}\frac{\boldsymbol{B} \times \nabla B}{B^{2}}$$

$$\boldsymbol{\sigma}_{e} = \frac{ime^{2}}{m_{e}\omega}\begin{pmatrix} \frac{\omega^{2}}{\omega^{2} - \omega_{ce}^{2}} & \frac{-i\omega_{ce}\omega}{\omega^{2} - \omega_{ce}^{2}} & 0\\ \frac{i\omega_{ce}\omega}{\omega^{2} - \omega_{ce}^{2}} & \frac{\omega^{2}}{\omega^{2} - \omega_{ce}^{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$v_{P} = \frac{1}{\omega_{c}}\frac{\dot{\boldsymbol{E}}}{B}$$

$$\dot{\boldsymbol{E}} = \varepsilon_{0} \begin{pmatrix} \vec{I} + \frac{i}{\varepsilon_{0}\omega} & \vec{\sigma} \end{pmatrix}$$

Chapter 5: Magnetized Plasmas

$$m{u}_{\perp} = rac{m{E} imes m{B}}{B^2} + rac{-
abla p imes m{B}}{gnB^2}$$
 $m{j}_D = (k_{
m B}T_{
m i} + k_{
m B}T_{
m e}) rac{m{B} imes
abla n}{B^2}$

$$\frac{\boldsymbol{u}_{\perp} = \pm \mu_{\perp} \boldsymbol{E} - D_{\perp} \frac{\nabla n}{n} + \frac{\boldsymbol{u}_{E} + \boldsymbol{u}_{D}}{1 + \nu^{2}/\omega_{c}^{2}} \qquad \sigma_{\perp} = \frac{\nu^{2}}{\sigma_{0} \nu^{2} + \omega_{c}^{2}} \\
\mu_{\perp} = \frac{\mu}{1 + \omega_{c}^{2} \tau^{2}} \qquad \sigma_{H} = \sigma_{0} \frac{\mp \nu \omega_{c}}{\nu^{2} + \omega_{c}^{2}} \\
D_{\perp} = \frac{D}{1 + \omega_{c}^{2} \tau^{2}} \qquad \sigma_{\parallel} = \sigma_{0} = \frac{ne^{2}}{m\nu} \\
\vec{\sigma} = \begin{pmatrix} \sigma_{\perp} & -\sigma_{H} & 0 \\ \sigma_{H} & \sigma_{\perp} & 0 \\ 0 & 0 & \sigma_{\parallel} \end{pmatrix} \qquad D_{\perp} = \frac{\eta_{\perp} \sum n_{s} k_{B} T_{s}}{R^{2}}$$

Chapter 5: Single Fluid Equations

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{j} \times \boldsymbol{B} - \nabla p + \rho \boldsymbol{g}$$

$$\boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B} = \eta \boldsymbol{j}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

$$\frac{\partial \sigma}{\partial t} + \nabla \cdot \boldsymbol{j} = 0$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j}$$

$$p = Cn^{\gamma}$$

Chapter 6: Magnetohydrodynamics

$$\nabla \left(p + \frac{B^2}{2\mu_0} \right) = \frac{1}{\mu_0} (\boldsymbol{B} \cdot \nabla) \boldsymbol{B}$$

$$R_M = \frac{\mu_0 v L}{\eta}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \frac{\eta}{\mu_0} \nabla^2 B + \nabla \times (\boldsymbol{u} \times \boldsymbol{B})$$

Chapter 7, 8, 9: Waves

$$v_{g} = \frac{\mathrm{d}\omega}{\mathrm{d}\boldsymbol{k}} \qquad n \times (n \times \boldsymbol{E}) + \overset{\leftrightarrow}{K} \cdot \boldsymbol{E} = 0$$

$$V_{A} = \left(\frac{B^{2}}{\mu_{0}\rho}\right)^{/2} \qquad n = \frac{c}{\omega}\boldsymbol{k}$$

$$V_{S} = \left(\frac{\gamma_{\mathrm{e}}k_{\mathrm{B}}T_{\mathrm{e}} + \gamma_{\mathrm{i}}k_{\mathrm{B}}T_{\mathrm{i}}}{m_{\mathrm{i}}}\right)^{1/2} \qquad n = |\boldsymbol{n}| = ck/\omega = c/v_{\phi}$$

$$v_{\phi} = \frac{\omega}{k} = \frac{c}{(1 - \omega_{\mathrm{pe}}^{2}/\omega^{2})^{1/2}} \qquad \overset{\leftrightarrow}{K} = \overset{\leftarrow}{\epsilon} /\varepsilon_{0} = \begin{pmatrix} S & -\mathrm{i}D & 0 \\ \mathrm{i}D & S & 0 \\ 0 & 0 & P \end{pmatrix}$$

$$\overset{\leftrightarrow}{K} = \overset{\leftarrow}{\epsilon} /\varepsilon_{0} = \begin{pmatrix} S & -\mathrm{i}D & 0 \\ \mathrm{i}D & S & 0 \\ 0 & 0 & P \end{pmatrix}$$

$$\begin{array}{lll} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array} & \begin{array}{lll} & \end{array} & \begin{array}{lll} & \end{array} & \end{array}$$

Useful Mathematical Identities

$$A.(B \times C) = B.(C \times A) = C.(A \times B)$$

$$(A \times B) \times C = B(C.A) - A(C.B)$$

$$\nabla.(\phi A) = A.\nabla \phi + \phi \nabla.A$$

$$\nabla \times (\phi A) = \nabla \phi \times A + \phi \nabla \times A$$

$$A \times (\nabla \times B) = \nabla (A.B) - (A.\nabla)B$$

$$- (B.\nabla)A - B \times (\nabla \times A)$$

$$(A.\nabla)A = \nabla (\frac{1}{2}A^2) - A \times (\nabla \times A)$$

$$\nabla.(A \times B) = B.(\nabla \times A) - A.(\nabla \times B)$$

$$\nabla \times (A \times B) = A(\nabla.B) - B(\nabla.A)$$

$$+ (B.\nabla)A - (A.\nabla)B$$

$$\nabla \times (\nabla \times A) = \nabla(\nabla.A) - (\nabla.\nabla)A$$

$$\nabla \times \nabla \phi = 0$$

$$\int_{-\infty}^{\infty} v^2 \exp(-av^2) dv = \frac{1}{2} \sqrt{\frac{\pi}{a^3}}$$

 $\nabla \cdot (\nabla \times \mathbf{A}) = 0$

Cylindrical coordinates

$$\nabla \phi = \frac{\partial \phi}{\partial r} \hat{\boldsymbol{r}} + \frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{\partial \phi}{\partial z} \hat{\boldsymbol{z}}$$

$$\nabla^2 \phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial^2 \phi}{\partial z^2}$$

$$\nabla \cdot \boldsymbol{A} = \frac{1}{r} \frac{\partial}{\partial r} (r A_r) + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \boldsymbol{A} = \left(\frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_{\theta}}{\partial z} \right) \hat{\boldsymbol{r}} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) \hat{\boldsymbol{r}} + \left[\frac{1}{r} \frac{\partial}{\partial r} (r A_{\theta}) - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \right] \hat{\boldsymbol{z}}$$

Bibliography

- [1] R. D. Hazeltine and F. L. Waelbroeck, *The Framework of Plasma Physics* (Perseus Books, Reading, Massachusetts, 1998).
- [2] D. J. ROSE and M. CLARK, *Plasmas and Controlled Fusion* (John Wiley and Sons, New York, 1961).
- [3] J. A. ELLIOT, in *Plasma Physics An Introductory Course*, edited by R. O. DENDY (Press Syndicate of the University of Cambridge, Cambridge, 1993), pp. 29–53.
- [4] F. F. CHEN, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1984), Vol. 1.
- [5] C. L. HEMENWAY, R. W. HENRY, and M. CAULTON, *Physical Electronics* (Wiley International, New York, 1967).
- [6] G. BEKEFI, Radiation Processes in Plasmas (John Wiley and Sons, New York, 1966).
- [7] J. A. BITTENCOURT, Fundamentals of Plasma Physics (Pergamon Press, New York, 1986).

List of Figures

1.1	The electric field applied between electrodes inserted into a plasma is screened by	
	free charge carriers in the plasma	8
1.2	Electric field generated by a line of charge	10
1.3	The figure shows regions of unbalanced charge and the resulting electric field profile	
	that results	11
1.4	Principle of the Mach Zehnder interferometer	12
1.5	Curve showing the dependence of the fractional ionization of a hydrogen (U_i =13.6 eV) as a function of temperature and number density	14
1.6	Unless alternatives can be found, a serious shortfall in expendable energy reserves will be apparent by the middle of the next century. (reproduced from http://FusEdWeb.pppl.gov/16	′)
1.7	The terrestrial fusion reaction is based on the fusion of deuterium and tritium with the release of a fast neutron and an alpha particle. (reproduced from http://FusEdWeb.pppl.gc 17	ov/
1.8	Comaprison of fuel needs and waste by-products for 1GW coal fired and fusion power	
	plants. (reproduced from http://FusEdWeb.pppl.gov/)	18
1.9	The principal means for confining hot plasma are gravity (the sun), inertia (laser	
	fusion) and using electric and magnetic fields (magnetic fusion). (reproduced from	
	http://FusEdWeb.pppl.gov/	19
1.10	H-1NF. (a) Artist's impression (the plasma is shown in red), (b) during construc-	
	tion and (c) coil support structure	21
1.11	Computed magnetic surfaces (left) and surfaces measured using electron gun and fluo-	
	rescent screen (right)	22
1.12	Joint European Torus (JET) tokamak. (a) CAD view and (b) inside the vacuum	
	vessel. From JET promotional material	25
	Large Helical Device (LHD) heliotron.	26
	Coil system and vacuum vessel for the Wendelstein 7-X (W 7-X) modular helias	26
1.15	Coil system and plasma of the H-1NF flexible heliac. Key: PFC: poloidal field	~=
	,	27
1.16	Plasma and coil system for the Heliotron-E torsatron	27
2.1	Left: A configuration space volume element $d\mathbf{r} = dxdydz$ at spatial position \mathbf{r} . Right: The equivalent velocity space element. Together these two elements	
	constitute a volume element $dV = d\mathbf{r}d\mathbf{v}$ at position (\mathbf{r}, \mathbf{v}) in phase space	30
2.2	Evolution of phase space volume element under collisions	33
2.3	Examples of velocity distribution functions	36
2.4	Imaginary box containing plasma at temperature T	39

2.5	Electrostatic Coulomb potential and Debye potential as a function of distance	
	from a test charge Q	44
2.6	The contributions (i) and (ii) noted in the text [3]	46
2.7	Diagram showing the electron potential energy $-e\phi$ in an electron plasma wave.	
	Regions labelled A accelerate the electron while in B, the electron is decelerated	
		48
2.8	Particles moving from the left and impinging on a gas undergo collisions	50
2.9	The trajectory taken by an electron as it makes a glancing impact with a massive	
	test charge Q	51
2.10		53
2.11	The electron impact ionization cross-section for hydrogen as a function of electron energy. Note the turn-on at 13.6 eV. [2]	56
2.12	Electron secondary emission for normal incidence on a typical metal surface [2]	57
	Dicetron secondary emission for normal metablec on a typical metal surface [2]	٠.
3.1	Illustrating the Boltzmann relation. Because of the pressure gradient, fast mobile	
	electrons move away, leaving ions behind. The nett positive charge generates an	
	electric field. The force F_e opposes the pressure gardient force F_p .[4]	66
3.2	Schematic diagram showing plasma in a container of length $2L$ with particle den-	
	sity vanishing at the wall. [4]	70
3.3	High spatial frequency features are quickly washed out by diffusion as the plasma	
	density relaxes towards its lowest order profile.[4]	73
3.4	Elastic collision cross-section of electrons in Ne, A, Kr and Xe.[2]	74
3.5	Drift velocity of electrons in hydrogen and deuterium.[2]	75
3.6	The ionization coefficient α/p for hydrogen. Note the exponential behaviour.[2]	76
3.7	An electron avalanche as a function of time.[5]	
3.8	(a) Paschen's curve showing breakdown voltage as a function of the product pd.(b) A plot of plasma current versus applied voltage. Note the dramatic increase	
	at the onset of breakdown. [5]	77
3.9	(a) The plasma potential distribution for a plasma confined electrostatically and	
	(b) the corresponding density distribution of ions and electrons. The ion density	
	is higher than electrons near the wall due to the negative electric field established	
	there by the escaping electron flux	78
3.10	The structure of the potential distribution near the plasma boundary	
	Potential variation in the wall edge of the sheath compared with that for uniform	
	and point like charge distributions.	82
3.12	Schematic diagram showing the potential drops around the plasma circuit	
	The Langmuir probe $I-V$ characteristic showing the electron and ion contribu-	
	tions and the plasma	85
3.14	The circuit shows the typical measurement arrangement using Langmuir probes.	
J	The probe bias is adjusted using the variable resistor	86
	The proof of the diagram and the feature reconcern the first the first feature reconcern the feature reconcern the first feature reconcern the first feature reconcern the feature reconcern the first feature reconcern the f	
4.1	Electrons and ions spiral about the lines of force. The ions are left-handed and	
	electrons right. The magnetic field is taken out of the page	90
4.2	When immersed in orthogonal electric and magnetic fields, electrons and ions drift	
	in the same direction and at the same velocity	91
4.3	The orbit in 3-D for a charged particle in uniform electric and magnetic fields	93
4.4	The cylindrical plasma rotates azimuthally as a result of the radial electric and	
	axial magnetic fields	94

	additional displacement as shown. The effect is opposite for each species	. 94
4.6	The decomposition of E_{\perp} into left and right handed components	
4.7	When the magnetic field changes in time, the induced electric field does work on	. 01
	the cyclotron orbit.	. 102
4.8	The grad B drift is caused by the spatial inhomogeneity of B. It is in opposite	. 102
1.0	directions for electrons and ions but of same magnitude	103
4.9	The curvature drift arises due to the bending of lines of force. Again this force	. 100
1.0	depends on the sign of the charge	105
4 10	The grad B drift for a cylindrical field.	
	Schematic diagram showing lines of force in a magnetic mirror device	
	Top: The flux linked by the particle orbit remains constant as the particle moves	. 100
4.12	into regions of higher field. The particle is reflected at the point where $v_{\parallel}=0$.	
	Bottom: Showing plasma confined by magnetic mirror $\dots \dots \dots \dots \dots$	100
/ 12	Particles having velocities in the loss cone are preferentially lost	
	The grad B drift separates vertically the electrons and ions. The resulting electric	. 110
±.14	field and E/B drift pushes the plasma outwards	111
/ 1¤	,	. 111
±.10	A helical twist (rotational transform) of the toroidal lines of force is introduced with the induction of toroidal current in the takemak. Electrons follow the magnetic follows	
	with the induction of toroidal current in the tokamak. Electrons follow the magnetic lines toroidally and short out the charge generation several by the grad P	
	netic lines toroidally and short out the charge separation caused by the grad B	111
116	drift	
	Diagram showing toridal magnetic geometry	. 112
4.17	Top: Schematic diagram of trajectory of "banana orbit" in a tokamak field. Bot-	110
	tom: The projection of passing and banana-trapped orbits onto the poloidal plane	. 116
5.1	Left: Diamagnetic current flow in a plasma cylinder. Right: more ions moving	
	downwards than upwards gives rise to a fluid drift perpendicular to both the	
	density gradient and B . However, the guiding centres remain stationary	. 121
5.2	Schematic showing the parallel and perpendicular electron and ion fluxes for a	
J. <u>_</u>	magnetized plasma	. 124
5.3	Top: The directions of current flow and their associated conductivities in a weakly-	. 147
J.J	ionized magnetoplasma. Bottom: The collision frequency dependence of the per-	
	pendicular conductivty	. 126
5.4	Left: Schematic showing particle displacements in direct Coulomb collisions be-	. 120
J. T	tween like species in a magnetized plasma. Right: Collisons between unlike parti-	
	cles effectively displace guiding centres	131
5.5	The theoretical perpendicular diffusion coefficient versus collision frequency for	. 191
ა.ა	a tokamak. The region of enhanced diffusion occurs in the so called "plateau"	
	regime centered about the particle bounce frequency in the magnetic mirrors	120
	regime centered about the particle bounce frequency in the magnetic infrors	. 132
6.1	In a cylindrical magnetized plasma column, the pressure gradient is supported by	
	the diamagnetic current j . In time, however, the gradient is dissipated through	
	radial diffusion $\boldsymbol{u}_{\perp}=u_{r}$. 136
6.2	In a tokamak, the equilibrium current density and magnetic field lie in nested	100
-	surfaces of constant pressure.	. 136
6.3	The plasma thermal pressure gradient is exactly balanced by a radial variation in	_55
	the magnetic pressure. This variation is generated by diamagnetic currents that	
	flow azimuthally.	120
	NOW azimuthany,	. ചകര

6.4	The magnetic lines of force for wires carrying parallel currents	<u>. 138</u>
6.5	The geometric interpretation of the magnetic tension due to curvature of lines of	
	force	. 139
6.6	An unmagnetized linear pinch showing sausage instability	. 140
6.7	The kinking of a plasma column under magnetic forces	. 140
6.8	Left: The flux through surface S as it is convected with plasma velocity \boldsymbol{u} remains	
0.0	constant in time. Right: showing the area element $d\mathbf{A}$ swept out by the plasma	
	motion. Note that this area vanishes when u is parallel to the circumferential	
	element $\mathrm{d}\ell$	1/19
6.9	Showing the process of magnetic reconnection.	
0.9	Showing the process of magnetic reconnection	. 145
7.1	The phase and group velocities of a wave can be determined from its dispersion relation.	149
7.2	Torisonal Alfvén waves in a compressible conducting MHD fluid propagating along	. 110
1.2	the lines of force. The fluid motion and magnetic perturbations are normal to the	
	Ÿ .	151
7.9		. 151
7.3	Longitudinal sound waves propagate along the magnetic field lines in a compress-	150
	ible conducting magnetofluid.	. 152
7.4	The magnetoacoustic wave propagates perpendicularly to \boldsymbol{B} compressing and re-	
	leasing both the lines of force and the conducting fluid which is tied to the field.	. 153
7.5	The perturbed components associated with the compressional magnetoacoustic	
	wave propagating perpendicular to \boldsymbol{B}_0	. 156
7.6	The perturbed components associated with the torsional or shear wave propagat-	
	ing along $oldsymbol{B}_0$. 157
7.7	The perturbed components associated with the torsional wave in a cylindrical	
	plasma column	. 157
7.8	Wave normal diagrams for the fast, slow and pure Alfvén waves for (a) $V_A > V_S$	
	and (b) $V_A < V_S$. The length of the radius from the origin to a point on the	
	associated closed curve is proportional to the wave phase velocity	. 159
	The second secon	
8.1	The longitudinal and transverse electric field perturbations for waves in a cold	
	electron plasma are decoupled	. 162
8.2	Phase velocity versus oscillation frequency for the transverse electron plasma wave.	
	Note reciprocal behaviour of v_q and v_ϕ and the region of nonpropagation	. 164
8.3	The form of the complex wavenumber for transverse electron plasma waves	
8.4	Dispersion relations for the three wave modes supported in an isotropic (unmag-	. 100
0.4	netized) warm plasma	168
	netized) warm plasma	. 100
9.1	The geometry for analysis of plane waves in cold magnetized plasma	. 172
9.2	(a) Near a cutoff, the wave field swells, the wavelength increases and the wave is ul-	
0.2	timately reflected. (b) near a resonance, the wavefield diminishes, the wavelength	
	decreases and the wave enrgy is absorbed	175
0.2	30	. 110
9.3	A plot of wave phase velocity versus frequency for waves propagating parallel to	176
0.4	the magnetic field for a cold plasma.	. 170
9.4	The principle of Faraday rotation for an initially plane polarized wave propagating	4 -
	parallel to the magnetic field.	. 177
9.5	The ordinary wave is a transverse electromagnetic wave having its electric vector	
	parallel to $oldsymbol{B}$. 178

LISA C	The ICLIES ip between the propagation vector, magnetic field and wave com-	
	ponents for the extraordinary wave. The wave exhibits an electric field in the	
	direction of motion and so is partly electrostatic in character	
9.7	A plot of wave phase velocity versus frequency for waves propagating perpendicular	
	to the magnetic field for a cold plasma	
10.1	10.1 Conductors marked with a cross carry current into the page (z direction), while	
	the dots indicate current out of the page	
10.2	Magnetic flux loop signal as a function of time	

Index

adiabatic changes, 58 adiabatic invariants, 85 ambipolar diffusion coefficient, 69 ambipolar electric field, 68 anomalous diffusion, 129	Hall, 128 ion saturation, 82 polarization, 93 current density, 33 cyclotron frequency, 15, 86
banana orbit, 113 Bohm diffusion coefficient, 129 Bohm sheath criterion, 79 Bohm speed, 79 Bohm-Gross dispersion relation, 44 Boltzmann factor, 77 relation, 64 Boltzmann factor, 40 Boltzmann relation, 39	Debye length, 12 Debye shielding, 40 Debye shielding, 11 diamagnetic current, 117 diamagnetic drift, 118 diamagnetism, 87, 135 dielectric low frequency susceptibility, 93 susceptibility, 168 tensor, 124 dielectric tensor, 98 diffusion, 67–70
breakdown, 71–75 Child-Langmuir Law, 80 collision frequency, 48 collision time, 48 collisions, 47–55 Coulomb, 48, 129 cross section, 48 electron-ion, 58 electron-neutral, 72 fusion, 52 mean free path, 47	ambipolar, 121, 128 Fick's law, 65, 128 fully ionized, magnetized, 128 neoclassical, 130 perpendicular, 120 resistive, 140–143 diffusion coefficient, 65 dispersion electron plasma waves, 44 extraordinary wave, 175 ion acoustic wave, 154 left hand em wave, 172
conductivity tensor, 123 conductivity tensor, 97 configuration space, 28 convective derivative, 30 Coulomb collisions, 48–52 force, 48 current density, 66 diamagnetic, 102, 118, 133	magnetoacoustic wave, 152 ordinary wave, 175 right hand em wave, 172 torsional Alfvén wave, 154 dispersion relation Alfvén waves, 152 cold magnetized plasma, 171 distribution average, 32 distribution function, 28 electric sheath, 76, 80

electron	magnetic flux surface, 18
plasma waves, 42	magnetic mirrors, 104
sound speed, 165	magnetic Reynold's number, 141
electron plasma frequency, 10	magnetohydrodynamics, 125
electron saturation current, 83	Maxwell-Boltzmann distribution, 35
electrostatic waves, 145	mean free path, 48
equation of continuity, 56	mean speed, 38
equation of motion, 57	mobility
equation of state, 58	perpendicular, 120
· ,	mobility, 65
Faraday rotation, 175	mobility tensor, 96
fluid equations, 32	,,
generalized Ohm's law, 127	neoclassical diffusion, 113
group velocity, 147	nuclear fusion, 52
guiding centre, 85	
guiding centre, 65	particle flux, 33
H-1 heliac, 16	particle number density, 32
Hall current, 122	Paschen's law, 75
heating	passing particles, 110
ohmic, 67, 142	phase space, 28, 29
, ,	phase velocity, 146
ideal MHD equations, 133	phasor, 146
inelastic collisions, 47	photo-ionization, 70
interferometry, 11	plasma
ion saturation current, 82	approximation, 60
ionization	confinement, 15
electron impact, 54	convection, 139
photo, 53	heating, 14
isothermal, 59	oscillations, 161
1. 1 1.11	potential, 81
kink instability, 138	stability, 137, 143
Landau damping, 42	plasma parameter, 9
Langmuir probes, 81–83	plasma sound speed, 165
Larmor radius, 87	polarization
light scattering, 13, 52	left handed, 96
Lorentz equation, 85	right handed, 96
loss cone, 106	polarization current, 91
lower hybrid frequency, 178	Poynting flux, 161
lower hybrid frequency, 116	pre-sheath, 79
magnetic	pressure, 37, 57
diffusion, 140–143	pressure tensor, 33
dipole moment, 100	pressure tensor, 99
flux, frozen-in, 140	radiative recombination, 70
islands, 143	random particle flux, 38
mirror ratio, 106	ratio of specific heats, 59, 164
pressure, 135	recombination, 70
reconnection, 143	refractive index, 168
,	,

resistivity, 66 rms thermal speed, 34 rotational transform, 108, 111 safety factor, 111 Saha equation, 13 sausage instability, 138 secondary emission, 54 sheath, 76 single fluid equations, 125, 127 speed mean $\langle v \rangle$, 38 rms $v_{\rm rms}$, 34, 36 thermal $v_{\rm th}$, 35 stellarator, 111 Stellarators, 16 superposition, 146 thermal equilibrium, 29, 35 tokamak, 108 tokamak, 16 upper-hybrid frequency, 177 velocity drift curvature \boldsymbol{v}_R , 102 E/B v_E , 90 Grad B $\boldsymbol{v}_{\nabla B}$, 102 polarization v_P , 93 toroidal, 107 group, 147 phase, 146 velocity moments, 32 velocity space, 28 Vlasov, 30 Vlasov equation, 42 wave Alfvén, 153 cutoff, 162, 172 electron plasma, 42 extraordinary, 176 ion acoustic, 148, 153 left hand, 171 magnetoacoustic, 150, 152 ordinary, 176 resonance, 172

right hand, 171

sound, 148

torsional Alfvén, 148 Whistler, 174 wave normal, 156 wave:ion acoustic, 149 winding number, 111

zeroth order velocity moment, 32