
Past exam papers(c) Assume that the ion oscillations are so slow that the electrons remain in a Maxwell-
Boltzmann distribution. If eφ/kBTe � 1, show that the perturbed charge density of the
electrons is given by −(n0e

2/kBTe)φ.

(d) Use Poisson’s equation to deduce the following dispersion relation:

k2 = (n0e
2/miε0ω

2)k2 − n0e
2/kBTeε0

(e) Recast the dispersion relation in the following form:

ω2 = ω2
pi/(1 + 1/k2λ2

D).

Discuss the low and high-k limits and compare with the Bohm-Gross dispersion relation
for electron plasma waves.

Question 3 (10 marks)

(a) Using the steady-state force balance equation (ignore the convective derivative) show that
the particle flux Γ = nu for electrons and singly charged ions in a fully ionized unmagne-
tized plasma is given by:

Γj = nuj = ±µjnE − Dj∇n

with mobility µ =| q | /mν where ν is the electron-ion collision frequency and diffusion
coefficient D = kBT/mν.

(b) Show that the diffusion coefficient can be expressed as D ∼ λ2
mfp/τ where λmfp is the mean

free path between collisions and τ is the collision time.

(c) Show that the plasma resistivity is given approximately by η = meν/ne2.

(d) In the presence of a magnetic field, the mean perpedicular velocity of particles across the
field is given by

u⊥ = ±µ⊥E − D⊥
∇n

n
+

uE + uD

1 + ν2/ω2
c

with uE = E×B/B2, uD = −∇p×B/qnB2 and where µ⊥ = µ/(1 + ω2
cτ

2) and D⊥ =
D/(1 + ω2

cτ
2). Discuss the scaling with ν of each of the four terms in the expression for

u⊥.

Question 4 (10 marks)

(a) Show that the drift speed of a charge q in a toroidal magnetic field can be written as

vT = 2kBT/qBR

where R is the radius of curvature of the field. (Hint: Consider both gradient and curvature
drifts)

(b) Compute the value of vT for a plasma at a temperature of 10 keV, a magnetic field strength
of 2 T and a major radius R = 1 m.



(c) Compute the time required by a charge to drift across a toroidal container of minor radius
1 m.

(d) Suppose an electric field is applied perpendicular to the plane of the torus. Describe what
happens.

Question 5 (10 marks)

(a) Show that the MHD force balance equation ∇p = j×B requires both j and B to lie on
surfaces of constant pressure.

(b) Using Ampere’s law and MHD force balance, show that

∇
(
p +

B2

2µ0

)
=

1

µ0

(B.∇)B

and discuss the meaning of the various terms.

(c) A straight current carrying plasma cylinder (linear pinch) is subject to a range of instabilities
(sausage, kink etc.). These can be suppressed by providing an axial magnetic field Bz that
stiffens the plasma through the additional magnetic pressure B2

z/2µ0 and tension against
bending. Consider a local constriction dr in the radius r of the plasma column. Assuming
that the longitudinal magnetic flux Φ through the cross-section of the cylinder remains
constant during the compression (dΦ = 0), show that the axial magnetic field strength is
increased by an amount dBz = −2Bzdr/r.

(d) Show that the internal magnetic pressure increases by an amount dpz = BzdBz/µ0 =
−(2B2

z/µ0)dr/r. [The last step uses the result obtained in (c)].

(e) By Ampere’s law we have for the azimuthal field component rBθ(r) = constant. Show that
the change in azimuthal field strength due the compression dr is dBθ = −Bθdr/r and that
the associated increase in external azimuthal magnetic pressure is dpθ = −(B2

θ/µ0)dr/r.

(f) Show that the plasma column is stable against sausage distortion provided B2
z > B2

θ/2.

Question 6 (10 marks)

(a) Plot the wave phase velocity as a function of frequency for plasma waves propagating
perpendicular to the magnetic field B, identifying cutoffs and resonances for both ordinary
and extraordinary modes.

(b) Using the matrix form of the wave dispersion relation




S − n2
z −iD nxnz

iD S − n2
x − n2

z 0
nxnz 0 P − n2

x







Ex

Ey

Ez


 = 0

show that the polarization state for the extraordinary wave is given by

Ex/Ey = iD/S.

Using a diagram, show the relative orientations of B, k and E for this wave.
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Attempt four questions. All are of equal value.
Show all working and state and justify relevant assumptions.

Question 1 (10 marks)
Attempt three of the following. Answers for each should require at most half a page.

(a) Discuss the relationship between the Boltzmann equation, the electron and ion equations of
motion and the single fluid force balance euqation.

(b) Describe electric breakdown with reference to the parameter E/p and the role of secondary
emission.

(c) Discuss the physical meaning of the Boltzmann relation. Use diagrams to aid your expla-
nation.

(d) Discuss the origin of plasma diamagnetism and its implications for magnetic plasma con-
finement.

(e) Draw a Langmuir probe I-V characteristic indicating the saturation currents, plasma poten-
tial and floating potential. How can the characteristic be used to estimate temperature?

(f) Describe Debye shielding and the relationship between the plasma frequency and Debye
length.



Question 2 (10 marks)

(a) Consider two infinite, perfectly conducting plates A1 and A2 occupying the planes y = 0
and y = d respectively. An electron enters the space between the plates through a small
hole in plate A1 with initial velocity v towards plate A2. A potential difference V between
the plates is such as to decelerate the electron. What is the minimum potential difference
to prevent the electron from reaching plate A2.

(b) Suppose the region between the plates is permeated by a uniform magnetic field B parallel
to the plate surfaces (imagine it as pointing into the page). A proton appears at the surface
of plate A1 with zero initial velocity. As before, the potential V between the plates is such
as to accelerate the proton towards plate A2. What is the minimum value of the magnetic
field B necessary to prevent the proton from reaching plate B? Sketch what you think the
proton trajectory might look like. (HINT: Energy considerations may be useful).

Question 3 (10 marks)

(a) Using the equilibrium force balance equation for electrons (assume ions are relatively im-
mobile) show that the conductivity of an unmagnetized plasma is given by

σ0 =
ne2

meν
(10.4)

(b) What is the dependence of the conductivity on electron temperature and density in the fully
ionized case?

(c) When the plasma is magnetized, the Ohm’s law for a given plasma species (electrons or
ions) becomes j = σ0(E + u×B) where j = nqu is the current density. Show that the
familiar E×B drift is recovered when the collision frequency becomes very small.

(d) If E is at an angle to B, there will be current flow components both parallel and perpen-
dicular to B, If ui is different from ue, there is also a nett Hall current j⊥ = en(ui⊥−ue⊥)
that flows in the direction E×B. To conveniently describe all these currents, the Ohm’s
law can equivalently be expressed by the tensor relation j =

↔
σ E with conductivity tensor

given by

↔
σ=




σ⊥ −σH 0
σH σ⊥ 0
0 0 σ‖


 (10.5)

where

σ⊥ = σ0
ν2

ν2 + ω2
c

σH = σ0
∓νωc

ν2 + ω2
c

σ‖ = σ0 =
ne2

mν

Explain the collision frequency dependence of the perpendicular and Hall conductivities.



Past exam papersQuestion 4 (10 marks) Answer either part (a) or part (b)

(a) Consider the two sets of long and straight current carrying conductors shown in confurations
A and B of Figure 1.

(i) Sketch the magnetic field line configuration for each case.

(ii) Describe the particle guiding centre drifts in each case, with particular emphasis on the
conservation of the first adiabatic moment.

(iii) Charge separation will occur due to the magnetic field inhomogeneity. This in turn estab-
lishes an electric field. Comment on the confining properties (or otherwise) of this electric
field.

Configuration A Configuration B

Figure 10.1: Conductors marked with a cross carry current into the page (z direction), while the
dots indicate current out of the page.

(b) In a small experimental plasma device, a toroidal B-field is produced by uniformly winding
120 turns of conductor around a toroidal vacuum vessel and passing a current of 250A through
it. The major radius of the torus is 0.6m.
A plasma is produced in hydrogen by a radiofrequency heating field. The electrons and ions
have Maxwellian velocity distribution functions at temperatures 80eV and 10eV respectively.
The plasma density at the centre of the vessel is 1016 m−3.

(i) Use Ampere’s law around a toroidal loop linking the winding to calculate the vacuum field
on the axis of the torus.

(ii) What is the field on axis in the presence of the plasma?

(iii) Calculate the total drift for both ions and electrons at the centre of the vessel and show
the drifts on a sketch.

(iv) Explain how these drifts are compensated when a toroidal current is induced to flow.



(v) The toroidal current produces a poloidal field. The combined fields result in helical magnetic
field lines that encircle the torus axis. For particles not on the torus axis and which have a
high parallel to perpendicular velocity ratio the projected guiding centre motion executes
a rotation in the poloidal plane (a vertical cross-section of the torus) as it moves helically
along a field line. What happens to particles that have a high perpendicular to parallel
velocity ratio?

Question 5 (10 marks) There is a standard way to check the relative importance of terms in
the single fluid MHD equations. For space derivatives we choose a scale length L such that
we can write ∂u/∂x ∼ u/L. Similarly we choose a time scale τ such that ∂u/∂t ∼ u/τ . So
∇×E = ∂B/∂t becomes E/L ∼ B/τ . Introduce velocity V = L/τ so that E ∼ BV .

(a) Examine the single fluid momentum equation.

ρ
∂u

∂t
= j×B −∇p (10.6)

Show that the terms are in the ratio

nmi
V

τ
: jB :

nmev
2
the

L
or 1 :

jBτ

nmiV
:

me

mi

v2
the

V 2
(10.7)

When the plasma is cold, show that this suggests V ∼ jBτ/nmi

(b) Examine the generalized Ohm’s law:

me

ne2

∂j

∂t
= E + u×B − 1

ne
j×B +

1

ne
∇pe − ηj (10.8)

Show that the terms are in the ratio

1

ωceωciτ 2
: 1 : 1 :

1

ωciτ
:

1

ωceτ

v2
the

V 2
:

νei

ωceωciτ
(10.9)

(c) Which terms of the Ohm’s law can be neglected if

(i) τ � 1/ωci

(ii) τ ≈ 1/ωci

(iii) τ ≈ 1/ωce

(iv) τ � 1/ωce

When can the resistive term ηj be dropped?

Question 6 (10 marks)
Electromagnetic wave propagation in an unmagnetized plasma. Consider an electromagnetic

wave propagating in an unbounded, unmagnetized uniform plasma of equilibrium density n0. We
assume the bulk plasma velocity is zero (v0 = 0) but allow small drifts v1 to be induced by the
one-dimensional harmonic electric field perturbation E = E1 exp [i(kx − ωt)] that is transverse
to the wave propagation direction.



Past exam papers(a) Assuming the plasma is also cold (∇p = 0) and collisionless, show that the momentum
equations for electrons and ions give

n0mi(−iωvi1) = n0eE1

n0me(−iωve1) = −n0eE1

(b) The ion motions are small and can be neglected (why?). Show that the resulting current
density flowing in the plasma due to the imposed oscillating wave electric field is given by

j1 = en0(vi1 − ve1) ≈ i
n0e

2

meω
E1. (10.10)

(c) Associated with the fluctuating current is a small magnetic field oscillation which is given
by Ampere’s law. Use the differential forms of Faraday’s law and Ampere’s law (Maxwell’s
equations) to obtain the first order equations kE1 = ωB1 and ikB1 = µ0j1 − iωµ0ε0E1

linking B1, E1 and j1.

(d) Use these relations to eliminate B1 and j1 to obtain the dispersion relation for plane elec-
tromagnetic waves propagating in a plasma:

k2 =
ω2 − ω2

pe

c2
(10.11)

(d) Sketch the dispersion relation and comment on the physical significance of the dispersion
near the region ω = ωpe.
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Attempt four questions. All are of equal value.
Show all working and state and justify relevant assumptions.

Question 1
Attempt three of the following. Answers for each should require at most half a page.

(a) Discuss the relationship between moments of the particle distribution function f and mo-
ments of the Boltzmann equation. Plot f(v) for a one dimensional drifting Maxwellian
distribution, indicating pictorially the meaning of the three lowest order velocity moments.

(b) Describe electric breakdown with reference to the parameter E/p and the role of secondary
emission.

(c) Discuss the physical meaning of the Boltzmann relation. Use diagrams to aid your expla-
nation.

(d) Discuss the origin of plasma diamagnetism and its implications for magnetic plasma con-
finement.

(e) Elaborate the role of Coulomb collisions for diffusion in a magnetized plasma.

(f) Discuss magnetic mirrors with reference to the adiabatic invariance of the orbital magnetic
moment µ.

(g) Describe Debye shielding and the relationship between the plasma frequency and Debye
length.

Question 2
Consider an axisymmetric cylindrical plasma with E = Er̂, B = Bẑ and ∇pi = ∇pe =

r̂∂p/∂r. If we negelct (v.∇)v, the steady state two-fluid momentum-balance equations can be
written in the form

en(E + ui×B) −∇pi − e2n2η(ui − ue) = 0

−en(E + ue×B) −∇pe + e2n2η(ui − ue) = 0

(a) From the θ̂ components of these equations, show that uir = uer.



Past exam papers(b) From the r̂ components, show that ujθ = uE + uDj (j = i, e).

(c) Find an expression for uir showing that it does not depend on E.

Question 3
The induced emf at the terminals of a wire loop that encircles a plasma measures the rate of

change of magnetic flux expelled by the plasma. You are given the following parameters:
Vacuum magnetic field strength - 1 Tesla
Number of turns on the diamagnetic loop - N = 75
Radius of the loop - aL = 0.075m
Plasma radius - a = .05m.
Given the observed diamagnetic flux loop signal shown below, calculate the plasma pressure as
a function of time. If the temperature of the plasma is constant at 1 keV, what is the plasma
density as a function of time? (HINT: use Faraday’s law relating the emf to the time derivative
of the magnetic flux)

2 4 6 8 10

12 14 16

Time (µs)

1.0

-1.0

Volts

Figure 10.2: Magnetic flux loop signal as a function of time.



Question 4
An infinite straight wire carries a constant current I in the +z direction. At t = 0 an electron

of small gyroradius is at z = 0 and r = r0 with v⊥0 = v‖0 (⊥ and ‖ refer to the direction relative
to the magnetic field.)

(a) Calculate the magnitude and direction of the resulting guiding centre drift velocity.

(b) Suppose the current increases slowly in time in such a way that a constant electric field is
induced in the ±z direction. Indicate on a diagram the relative directions of I, E, B and
vE.

(c) Do v⊥ and v‖ increase, decrease or remain the same as the current increases? Explain your
answer.

Question 5
Magnetic pumping is a means of heating plasmas that is based on the constancy of the

magnetic moment µ. Consider a magnetized plasma for which the magnetic field strength is
modulated in time according to

B = B0(1 + ε cos ωt) (10.12)

where ω � ωc and ε � 1. If U⊥ = mv2
⊥/2 = (mv2

x + mv2
y)/2 is the particle perpendicular kinetic

energy (electrons or ions) show that the kinetic energy is also modulated as

dU⊥
dt

=
U⊥
B

dB

dt
.

We now allow for a collisional relaxation between the perpendicular (U⊥) and parallel (U‖) kinetic
energies modelled according to the coupled equations

dU⊥
dt

=
U⊥
B

dB

dt
− ν

(
U⊥
2

− U‖
)

dU‖
dt

= ν
(

U⊥
2

− U‖
)

where ν is the collision frequency. By suitably combining these equations, one can calculate the
increment ∆U in total kinetic energy during a period ∆t = 2π/ω to obtain a nett heating rate

∆U

∆t
=

ε2

6

ω2ν

9ν2/4 + ω2
U ≡ αU. (10.13)

This heating scheme is called collisional magnetic pumping. Comment on the physical reasons
for the ν-dependence of α in the cases ω � ν and ω � ν.

Assuming that the plasma is fully ionized (Coulomb collisions), and in the case ω � ν, show
that the heating rate ∆U/∆t decreases as the temperature increases. What would happen if the
magnetic field were oscillating at frequency ω = ωc?

Question 6
On a graph of wave frequency ω versus wavenumber k show the dispersion relations for the

ion and electron acoustic waves, and a transverse electromagnetic wave (ω > ωpe) propagating
in an unmagnetized plasma. (HINT: Draw the ion and electron plasma frequencies and lines
corresponding to the electron sound speed, the ion sound speed and the speed of light.)



Past exam papersConsider the case of electron plasma oscillations in a uniform plasma of density n0 in the
presence of a uniform steady magnetic field B0 = B0k̂. We take the background electric field to
be zero (E0 = 0) and assume the plasma is at rest u = 0. We shall consider longitudinal electron
oscillations having k ‖ E1 where we take the oscillating electric field perturbation associated with
the electron wave E1 ≡ Eî to be parallel to the x-axis.

Replacing time derivatives by −iω and spatial gradients by ik, and ignoring pressure gradients
and the convective term (u.∇)u, show that for small amplitude perturbations, the electron
motion is governed by the linearized mass and momentum conservation equations and Maxwell’s
equation:

−iωn1 + n0ikux = 0 (10.14)

−iωu = −e(E + u×B0) (10.15)

ε0ikE = −en1. (10.16)

Use Eq. (10.15) to show that the x component of the electron motion is given by

ux =
eE/iωm

1 − ω2
c/ω

2
(10.17)

Substituting for ux from the continuity equation and eliminating the density perturbation us-
ing Eq. (10.16), obtain the dispersion relation for the longitudinal electron plasma oscillation
transverse to B:

ω2 = ω2
p + ω2

c . (10.18)

Why is the oscillation frequency greater than ωp? By expressing the ratio ux/uy in terms of
ω and ωc show that the electron trajectory is an ellipse elongated in the x direction.
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Attempt four questions. All are of equal value.
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Question 1

Discuss, using diagrams where appropriate, three of the following issues. Answers for each
should require at most half a page.

(a) Ambipolar diffusion in unmagnetized plasma.

(b) Electric breakdown. Why is E/p important and what is the role of secondary emission?

(c) The physics underlying the Boltzmann relation.

(d) MHD waves that propagate perpendicular and parallel to B.

(e) The resistivity of weakly and fully ionized unmagnetized plasmas.

(f) Magnetic mirrors and the role of the invariance of the orbital magnetic moment µ.

(g) Debye shielding and the relationship between the plasma frequency and Debye length.

Question 2

(a) Explain using a diagram why the orbit of a particle gyrating in a magnetic field is diamag-
netic.

(b) Given that the magnetic moment of a gyrating particle is µ=W⊥/B where W⊥ is the kinetic
energy of the motion perpendicular to the magnetic field of strength B, find an expression
for the magnetic moment per unit volume M in a plasma with particle density n and
temperature T immersed in a uniform magnetic field.

(c) Supposing the field inside the plasma to be reduced compared with that outside the plasma
B by µ0M � B, calculate the difference in magnetic pressure B2/2µ0 inside the plasma
and confirm that the total pressure is constant.



Past exam papers(d) Describe in general terms what happens to maintain pressure balance as the plasma tem-
perature is increased, keeping the total number of particles constant.

Question 3

(a) With the aid of diagrams, explain why magnetic plasma confinement is not possible in a
purely toroidal magnetic field.

(b) The earth’s magnetic field may be approximated as a magnetic dipole out to a few earth
radii (RE = 6370km). The magnetic field for a dipole can be written approximately as

Br =
µ0

4π

2M cos θ

r3
(10.19)

Bθ =
µ0

4π

M sin θ

r3
(10.20)

where θ is the polar angle from the direction of the dipole moment vector, Br is the magnetic
field radial component and Bθ is the component orthogonal to Br. Using the fact that, at
one of the magnetic poles (r = RE) , the field has a magnitude of 0.5 Gauss, calculate the
earth’s dipole moment M .

(c) Assuming an electron is constrained to move in the earth’s magnetic equatorial plane (v‖ =
0), calculate the guiding centre drift velocity, and determine the time it takes to drift once
around the earth at a radial distance r0. What is the direction of drift.

(d) Let there be an isotropic population of 1 eV protons and 30 keV electrons each with density
n = 107 m−3 at r = 5RE in the equatorial plane. Compute the ring current density in
A/m2 associated with the drift obtained in (c).

(e) Now assume that the perpendicular kinetic energy equals the parallel kinetic energy at the
magnetic equatorial plane. Qualitatively describe the motion of the electron guiding centre.

Question 4

(a) Using the steady-state force balance equation (ignore the convective derivative) show that
the particle flux Γ = nu for electrons and singly charged ions in an unmagnetized plasma
is given by:

Γj = nuj = ±µjnE − Dj∇n

with mobility µ =| q | /mν where ν is the collision frequency and diffusion coefficient
D = kBT/mν.

(b) Show that the diffusion coefficient can be expressed as D ∼ λ2
mfp/τ where λmfp is the mean

free path between collisions and τ is the collision time.

(c) Show that the plasma resistivity is given approximately by η = meν/ne2.



(d) In a weakly ionized magnetoplasma, the mean perpendicular velocity of particles across the
field is given by

u⊥ = ±µ⊥E − D⊥
∇n

n
+

uE + uD

1 + ν2/ω2
c

with uE = E×B/B2, uD = −∇p×B/qnB2 and where µ⊥ = µ/(1 + ω2
cτ

2) and D⊥ =
D/(1+ω2

cτ
2). Discuss the physical origin of each of these terms and their behaviour in the

limit of weak and strong magnetic fields.

Question 5 (10 marks)

The dispersion relation for low frequency magnetohydrodynamic waves in a magnetized
plasma was derived in lectures as

−ω2u1 + (V 2
S + V 2

A)(k.u1)k + (k.V A)[(k.V A)u1 − (V A.u1)k − (k.u1)V A] = 0

where u1 is the perturbed fluid velocity, k is the propagataion wavevector and V A = B0/(µ0ρ0)
1/2

is a velocity vector in the direction of the magnetic field with magnitude equal to the Alfvén
speed and VS is the sound speed.

(a) Deduce the dispersion relations for waves propagating parallel to the magnetic field and
identify the wave modes.

(b) Using

∂B1

∂t
−∇×(u1×B0) = 0

E1 + u1×B = 0

and assuming plane wave propagation so that ∂
∂t

→ −iω and ∇× → ik×, make a sketch
showing the relation between the perturbed quantities u1, E1, B1 and k and B0 for the
transverse wave propagating along B0.

Question 6 (10 marks)

Consider an electromagnetic wave propagating in an unbounded, em unmagnetized uniform
plasma of equilibrium density n0. We assume the bulk plasma velocity is zero (v0 = 0) but
allow small drifts v1 to be induced by the one-dimensional harmonic electric field perturbation
E = E1 exp [i(kx − ωt)] that is transverse to the wave propagation direction.

(a) Assuming the plasma is also cold (∇p = 0) and collisionless, show that the momentum
equations for electrons and ions give

n0mi(−iωvi1) = n0eE1

n0me(−iωve1) = −n0eE1

(b) The ion motions are small and can be neglected. Show that the resulting current density
flowing in the plasma due to the imposed oscillating wave electric field is given by

j1 = en0(vi1 − ve1) ≈ i
n0e

2

meω
E1. (10.21)



Past exam papers(c) Associated with the fluctuating current is a small magnetic field oscillation which is given
by Ampere’s law. Use the differential forms of Faraday’s law and Ampere’s law (Maxwell’s
equations) to obtain the first order equations kE1 = ωB1 and ikB1 = µ0j1 − iωµ0ε0E1

linking B1, E1 and j1.

(d) Use these relations to eliminate B1 and j1 to obtain the dispersion relation for plane elec-
tromagnetic waves propagating in a plasma:

k2 =
ω2 − ω2

pe

c2
(10.22)

(d) Sketch the dispersion relation and comment on the physical significance of the dispersion
near the region ω = ωpe.



APPENDIX: A Glossary of Useful Formulae

Chapter 1: Basic plasma phenomena

ωpe =

√
e2ne

ε0me

fpe � 9
√

ne( Hz)

λD =

√
ε0kBTe

nee2

ni

n
� 2.4 ××1021 T

3
2

e

ni

exp
−Ui

kBT

Chapter 2: Kinetic theory

∂f

∂t
+v.∇r.f +

q

m
(E+v×B).∇v.f =

(
∂f

∂t

)
coll

Γ = nv̄

j = qnv̄

p =
2

3
nŪr

fM(v) = A exp(
−mv2

2kBT
) = A exp (−v2/v2

th)

Ūr(Maxwellian) ≡ EAv =
1

2
kBT (1 − D)

1 eV � 11, 600 K

vrms =

√
3kBT

m

vth =

√
2kBT

m

pj = njkBTj

ne = ne0 exp

(
eφ

kBTe

)

λmfp =
1

nσ

τ =
λmfp

v
ν = nσv

b0 =
2qq0

4πε0mv2

ln Λ = ln〈λD

b0

〉

σei
coulomb � Z2e4 ln Λ

2πε2
0m

2
ev

4
e

δEei ∼ 4Eeme

mi

Pei = −mene(ue − ui)

τei

Chapter 2: Fluid and Maxwell’s equations

σ = niqi + neqe

j = niqiui + neqeue

∂nj

∂t
+ ∇.(njuj) = 0

mjnj

[
∂uj

∂t
+ (uj.∇)uj

]
= qjnj(E + uj×B) −∇pj + Pcoll

pj = Cjn
γj

j

∇.E =
σ

ε0

∇×E = −∂B

∂t
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∇×B = µ0j + µ0ε0
∂E

∂t

Chapter 3: Gaseous Electronics

Γj = nuj = ±µjnE − Dj∇n

µ =
|q |
mν

D =
kBT

mν
E = ηj

η =
νeime

nee2

η � Ze2√me ln Λ

6
√

3πε2
0(kBTe)3/2
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ion acoustic wave, 154
left hand em wave, 172
magnetoacoustic wave, 152
ordinary wave, 175
right hand em wave, 172
torsional Alfvén wave, 154

dispersion relation
Alfvén waves, 152
cold magnetized plasma, 171

distribution average, 32
distribution function, 28

electric sheath, 76, 80



INDEXelectromagnetic waves, 145
electron

plasma waves, 42
sound speed, 165

electron plasma frequency, 10
electron saturation current, 83
electrostatic waves, 145
equation of continuity, 56
equation of motion, 57
equation of state, 58

Faraday rotation, 175
fluid equations, 32

generalized Ohm’s law, 127
group velocity, 147
guiding centre, 85

H-1 heliac, 16
Hall current, 122
heating

ohmic, 67, 142

ideal MHD equations, 133
inelastic collisions, 47
interferometry, 11
ion saturation current, 82
ionization

electron impact, 54
photo, 53

isothermal, 59

kink instability, 138

Landau damping, 42
Langmuir probes, 81–83
Larmor radius, 87
light scattering, 13, 52
Lorentz equation, 85
loss cone, 106
lower hybrid frequency, 178

magnetic
diffusion, 140–143
dipole moment, 100
flux, frozen-in, 140
islands, 143
mirror ratio, 106
pressure, 135
reconnection, 143

tension, 135
magnetic flux surface, 18
magnetic mirrors, 104
magnetic Reynold’s number, 141
magnetohydrodynamics, 125
Maxwell-Boltzmann distribution, 35
mean free path, 48
mean speed, 38
mobility

perpendicular, 120
mobility, 65
mobility tensor, 96

neoclassical diffusion, 113
nuclear fusion, 52

particle flux, 33
particle number density, 32
Paschen’s law, 75
passing particles, 110
phase space, 28, 29
phase velocity, 146
phasor, 146
photo-ionization, 70
plasma

approximation, 60
confinement, 15
convection, 139
heating, 14
oscillations, 161
potential, 81
stability, 137, 143

plasma parameter, 9
plasma sound speed, 165
polarization

left handed, 96
right handed, 96

polarization current, 91
Poynting flux, 161
pre-sheath, 79
pressure, 37, 57
pressure tensor, 33

radiative recombination, 70
random particle flux, 38
ratio of specific heats, 59, 164
recombination, 70
refractive index, 168



resistivity, 66
rms thermal speed, 34
rotational transform, 108, 111

safety factor, 111
Saha equation, 13
sausage instability, 138
secondary emission, 54
sheath, 76
single fluid equations, 125, 127
speed

mean 〈v〉, 38
rms vrms, 34, 36
thermal vth, 35

stellarator, 111
Stellarators, 16
superposition, 146

thermal equilibrium, 29, 35
tokamak, 108
tokamak, 16

upper-hybrid frequency, 177

velocity
drift

curvature vR, 102
E/B vE, 90
Grad B v∇B, 102
polarization vP , 93
toroidal, 107

group, 147
phase, 146

velocity moments, 32
velocity space, 28
Vlasov, 30
Vlasov equation, 42

wave
Alfvén, 153
cutoff, 162, 172
electron plasma, 42
extraordinary, 176
ion acoustic, 148, 153
left hand, 171
magnetoacoustic, 150, 152
ordinary, 176
resonance, 172
right hand, 171

sound, 148
torsional Alfvén, 148
Whistler, 174

wave normal, 156
wave:ion acoustic, 149
winding number, 111

zeroth order velocity moment, 32


