
Chapter 5

MAGNETIZED PLASMAS

5.1 Introduction

We are now in a position to study the behaviour of plasma in a magnetic field. In
the first instance we will re-examine particle diffusion and mobility with magnetic
field included. It will be shown that the importance of magnetic effects depends
on the ratio of the collision and cyclotron frequencies. When the collision fre-
quency is high, the magnetic field is not felt by the plasma. When the collision
frequency is low, and since a fluid element is composed of many individual par-
ticles, we expect the fluid to exhibit drifts if the guiding centres drift. However,
there is also a drift associated with the pressure gradent that is not found in the
single particle picture.

Later in this chapter, we combine the electron and ion fluid equations into
a pair of equations – force balance and Ohm’s law – that describe the plasma
as a single conducting fluid. These equations will be used to treat a number of
important problems and will be useful as a platform for the study of low frequency
wave behaviour in a plasma.

5.2 Diamagnetic current

In the previous chapter it was noted that plasma particles are diamagnetic - i.e.
they produce a magnetic flux which opposes the ambient magnetic field. The
amount of expelled flux depends on the particle thermal energy. When taken
over the volume of the plasma, this diamagnetism must give rise to a nett current
flowing in the plasma – the diamagnetic current. To see how this arises, consider
the equation of motion and ignore collisions:

mn

[
∂u

∂t
+ (u.∇)u)

]
= qn(E + u×B) −∇p. (5.1)
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Again, we use the notation u to designate mean fluid velocities. The ratio of the
first and third terms is

mn∂u/∂t

qnu×B
∼ mniωu⊥

qnu⊥B

∼ ω

ωc

.

We assume ω � ωc and neglect also the convective term on the left side (we show
why later). Now

(u×B)×B = B(B.u) − u(B.B)

= B2u‖k̂ − u⊥B2 − B2u‖k̂

= −u⊥B2

so that taking the cross product of Eq. (5.1) with B gives

0 = qn(E×B − u⊥B2) −∇p×B.

Solving for the velocity gives

u⊥ =
E×B

B2
+

−∇p×B

qnB2

= uE + uD. (5.2)

The first term on the right is immediately recognizable as the E×B drift. The
second term is the so-called diamagnetic drift – a fluid effect. Note that uD

depends on the particle charge and so gives rise to a current flow:

jD = ne(uDi − uDe)

= (kBTi + kBTe)
B×∇n

B2
. (5.3)

This current flows in such a way as to cancel the imposed field (see Fig. 5.1).
For a plasma cylinder we have

uD =
−∇p

qnB
= ∓

γkBT i
e

eB

∇n

n
(5.4)

Aside Justification for the neglect of the second convective term in the equa-
tion of motion:
If E = 0 and ∇ points in the −r̂ direction and uD is in the θ̂ direction then
u.∇ = 0. (uE is also in the θ̂ direction if E = −∇φ is in the radial direction).
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Figure 5.1: Left: Diamagnetic current flow in a plasma cylinder. Right: more

ions moving downwards than upwards gives rise to a fluid drift perpendicular to

both the density gradient and B. However, the guiding centres remain stationary.

5.3 Particle Transport in a Weakly Ionized Mag-

netoplasma

We once again use the fluid equation of motion for both electrons and singly
charged ions, but retain collisions:

mn
∂u⊥
∂t

= qn(E + u⊥×B) − kBT∇n + P. (5.5)

P = −mnu⊥ν is the rate of change of momentum due to neutral collisions (we
ignore motion of neutrals). We assume steady state (∂/∂t = 0) and that the
plasma is isothermal γ = 1. The x and y components of Eq. (5.5) give the
coupled equations

mnνux = qnEx − kBT
∂n

∂x
+ qnuyB

mnνuy = qnEy − kBT
∂n

∂y
− qnuxB

which become

ux = ±µEx − D

n

∂n

∂x
± ωc

ν
uy

uy = ±µEy − D

n

∂n

∂y
∓ ωc

ν
ux (5.6)
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where the mobility and diffusion coefficients are defined by Eqs. (3.4) and (3.5).
The plus and minus signs hold respectively for ions and electrons (we have not
bothered to distinguish notationally other species specific quantities such as mass
etc.). The above equations can be decoupled by substituting for ux and solving
for uy (and vice versa) to find

ux(1 + ω2
cτ

2) = ±µEx − D

n

∂n

∂x
+ ω2

cτ
2 Ey

B
∓ ω2

cτ
2 kBT

eB

1

n

∂n

∂y

uy(1 + ω2
cτ

2) = ±µEy − D

n

∂n

∂y
− ω2

cτ
2 Ex

B
± ω2

cτ
2 kBT

eB

1

n

∂n

∂x
(5.7)

where τ = 1/ν is the collision time. The final two terms in each expression are
proportional to the E/B drift and the diamagnetic drift perpendicular to B

uEx =
Ey

B
uEy = −Ex

B

uDx = ∓kBT

eB

1

n

∂n

∂y
uDy = ±kBT

eB

1

n

∂n

∂x
. (5.8)

We simplify further by defining perpendicular mobility and diffusion coeffi-
cients:

µ⊥ =
µ

1 + ω2
cτ

2
(5.9)

D⊥ =
D

1 + ω2
cτ

2
(5.10)

and Eq. (5.7) becomes

u⊥ = ±µ⊥E − D⊥
∇n

n
+

uE + uD

1 + ν2/ω2
c

. (5.11)

The expression for the species flow speed perpendicular to the field is composed
of two parts:

1. uE and uD drifts perpendicular to ∇φ and ∇p (and B) are slowed down
by collisions with neutrals (this can be species dependent and so lead to
currents).

2. Mobility and diffusion drifts parallel to ∇φ and ∇p are reduced by factor
(1 + ω2

cτ
2)

When ω2
cτ

2 � 1 the magnetic field has a weak effect and vice versa when
ω2

cτ
2 � 1. In other words, the magnetic field can significantly retard diffusion

processes, the diffusion coefficient becoming

D⊥ ≈
(

kBT

mν

)
1

ω2
cτ

2
=

kBTν

mω2
c

(5.12)
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Note that in the magnetized case, the role of collisions is reversed compared with
the electrostatic case. Thus

‖ B D ∼ ν−1 (collisions retard the motion)

⊥ B D⊥ ∼ ν (collisions needed for cross field migration.)(5.13)

Also note the mass dependence (ν ∼ m−1/2):

‖ B D ∼ m−1/2 (electrons travel faster than ions)

⊥ B D⊥ ∼ m1/2 (ions have larger Larmor radius) (5.14)

It is instructive to look at the scaling of the diffusion coefficients in another way:

D =
kBT

mν
∼ v2

thτ ∼ λ2
mfp/τ (5.15)

D⊥ =
kBTν

mω2
c

∼ v2
th

r2
L

v2
th

ν ∼ r2
L/τ. (5.16)

In the parallel case, the step length for diffusion is the mean free path between
collisions. In the magnetized case, the step length is, not surprisingly, the Larmor
radius. It is interesting that the fluid theory “knows” about rL - a single particle
quantity.

Ambipolar diffusion across B

This is not a trivial problem due to the anisotropy imposed by the magnetic field.
With reference to Fig. 5.2, it would be expected that Γe⊥ < Γi⊥ because of the
smaller Larmor radius of the electrons, and hence the more rapid diffusion loss of
ions. We would then expect an electric field to be established which accelerates
electrons and retards ions (opposite the electrostatic case). However, in linear
systems, the fluxes can be compensated by Γe‖ > Γi‖: conducting endplates would
short-circuit the ambipolar electric field. A given situation must be assessed using
the continuity equation ∇.Γi = ∇.Γe (steady state).

5.4 Conductivity in a Weakly Ionized Magneto-

plasma

Let us consider a plasma in equilibrium and ignore pressure gradients. It is
instructive to compare the treatment given here with that presented for the elec-
trostatic case in Sec. 3.2. The perpendicular equations (5.7) become

ux(1 + ω2
cτ

2) = ±µEx + ω2
cτ

2 Ey

B

uy(1 + ω2
cτ

2) = ±µEy − ω2
cτ

2 Ex

B
. (5.17)
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Figure 5.2: Schematic showing the parallel and perpendicular electron and ion

fluxes for a magnetized plasma

The associated equation of motion is

0 = qn(E + u×B) − mnνu (5.18)

which can be rewritten

j = σ0(E + u×B) (5.19)

where j = nqu is the species current density (je or j i ) and

σ0 =
ne2

mν
(5.20)

is the dc conductivity along B.

Observe that when ν → 0, σ0 → ∞ implying that E + u×B = 0 and the
usual E×B drift is recovered. If ui is different from ue due to larger collisional
retardation of motion of the ions compared with electrons, the fluids no longer
move together and σ0 is finite. There is then a resulting net current flow

j⊥ = en(ui⊥ − ue⊥) (5.21)

which is perpendicular to both E and B and is known as the Hall current. Since
ui⊥ < ue⊥, this current flows in the −E×B direction – i.e. opposite the fluid
drift direction.

Let us rewrite Eq. (5.19) in a tensor form that relates j directly to the electric
field:

j =
↔
σ E (5.22)
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(we have already seen this equation in relation to single particle motions). Using
Eq. (5.17) we obtain




jx

jy

jz


 = σ0




ν2

ν2 + ω2
c

−νωc

ν2 + ω2
c

0

νωc

ν2 + ω2
c

ν2

ν2 + ω2
c

0

0 0 1




.




Ex

Ey

Ez


 (5.23)

allowing us to define a conductivity tensor

↔
σ=




σ⊥ −σH 0
σH σ⊥ 0
0 0 σ‖


 (5.24)

with

σ⊥ = σ0
ν2

ν2 + ω2
c

perpendicular conductivity (5.25)

σH = σ0
∓νωc

ν2 + ω2
c

Hall conductivity (5.26)

σ‖ = σ0 =
ne2

mν
Longitudinal conductivity (5.27)

Note that the Hall term disappears when ν → 0. The directions of current flow
in a weakly ionized magnetoplasma and the collision-frequency dependence of the
conductivity terms are shown in Fig. 5.3.

5.4.1 Conductivity in time-varying fields

The result Eq. (5.24) applies for dc or steady state conditions. In the presence of
a time varying electric field (for example and electromagnetic wave), the equation
of motion becomes

−iωnmu = qn(E + u×B) − mnνu (5.28)

or
0 = qn(E + u×B) − mnu(ν − iω). (5.29)

This is identical to Eq. (5.18) apart from the substitution ν → (ν − iω). The
conductivity tensor for oscillating electric fields is therefore of the same form as
Eq. (5.24) but with this substitution carried through.

When collisons with neutrals can be neglected, we take ν → 0 and the ac
conductivity reduces to the expression obtained in the single particle picture
Eq. (4.53) but with the understanding that the current in the fluid picture is
averaged over the distribution of particle velocities.
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Figure 5.3: Top: The directions of current flow and their associated conductivities

in a weakly-ionized magnetoplasma. Bottom: The collision frequency dependence

of the perpendicular conductivty.

Again, the dielectric tensor for the plasma can be expressed as

↔
ε= ε0

(↔
I +

i

ε0ω

↔
σ
)

(5.30)

or

↔
ε= ε0




ε1 −ε2 0
ε2 ε1 0
0 0 ε3


 (5.31)
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with

ε1 = 1 +
i

ωε0
σ⊥ (5.32)

ε2 =
i

ωε0
σH (5.33)

ε3 = 1 +
i

ωε0
σ0. (5.34)

Particle fluxes are thus produced by either, or both, electromagnetic fields and
density gradients and are governed by the associated mobilities and diffusion
coefficients.

5.5 Single Fluid Equations

When the plasma is essentially fully ionized, some considerable simplifications in
the description of the physics can be obtained by combining the fluid equations
for the electrons and ions into a set of equations that describe the single fluid. At
frequencies ω � ωci this gives rise to the study of magnetohydrodynamics. The
plasma fluid is then like, say, liquid mercury with a corresponding mass density
ρ and conductivity σ.

At low frequencies the role of the electrons is mainly shielding (quasineutral-
ity), while me is small so that inertial effects can be neglected. In deriving the
single fluid equations we thus make the following assumptions and simplifications:

1. Let me/mi → 0

2. Assume ne = ni (quasineutrality). A consequence of this is that we can
ignore displacement currents ε0∂E/∂t → 0 in Maxwell’s equations (low
frequency).

3. Ignore (u.∇)u (u is small ⇒ quadratic)

4. For generality, allow for non-electromagnetic force mg.

We make the following definitions

ρ = nimi + neme = n(mi + me) (5.35)

u =
1

ρ
(nimiui + nemeue)

≈ miui + meue

mi + me
(5.36)

j = e(niui − neue) = ne(ui − ue) (5.37)
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and note that j need not necessarily be parallel to the u as was the case for the
individual fluids. The electron and ion equations of motion are

nme
∂ue

∂t
= −en(E + ue×B) −∇pe + nmeg + P ei (5.38)

nmi
∂ui

∂t
= en(E + ui×B) −∇pi + nmig + P ie (5.39)

where for the electron-ion collision term we have P ie = −P ei. We now form the
first of the single fluid equations by adding the ion and electron equations:

n
∂

∂t
(miui + meue) = en(ui − ue)×B −∇p + n(me + mi)g (5.40)

where p = pi + pe and the E field and collisions cancel. Using our definitions
(5.35)-(5.37) we obtain the single fluid equation of motion

ρ
∂u

∂t
= j×B −∇p + ρg. (5.41)

There are no electric field effects because the single fluid is neutral!
There are two independent equations for the ions and electrons so that we

can use a different linear combination of the two to obtain another single fluid
equation. We form me×(5.39) -mi×(5.38) to give:

nmemi
∂

∂t
(ui − ue) = ne(mi + me)E + ne(meui + miue)×B

− me∇pi + mi∇pe − (me + mi)P ei. (5.42)

We now simplify each of the terms of this equation in turn:

nmemi
∂

∂t
(ui − ue) = nmemi

∂

∂t

(
j

ne

)

ne(mi + me)E = eρE

meui + miue = meui − meue + meue + meue − miui + miui

= me(ui − ue) + mi(ue − ui) + meue + miui

= −(mi − me)
j

ne
+

ρ

n
u

⇒ ne(meui + miue)×B = eρu − (mi − me)j×B

me∇pi + mi∇pe ≈ mi∇pe

(me + mi)P ei = −(me + mi)ηenj

= eρηj

where we have used

P ei = nme(ui − ue)νei

= (meνei/e)j

= ne
(

meνei

ne2

)
j

= neηj. (5.43)
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Combining the above simplifications and dividing through by eρ we obtain the
intermediate result

E + u×B − ηj =
1

eρ

[
nmemi

e

∂

∂t

(
j

n

)
+ (mi − me)j×B + me∇pi

]
(5.44)

Comparing the magnitudes of the first two terms on the right side:(
memiωj

e

)
/(mijB) ∼ ω

ωce
(5.45)

which implies that we can neglect the first term for low-frequency analyses (unless
j ‖ B in which case the comparison is invalid). The final result is the generalized
Ohm’s law

E + u×B = ηj +
1

en
(j×B −∇pe). (5.46)

It is often valid to ignore the final two terms in Eq. (5.46) as well. In slowly time
varying situations, and ignoring gravity, the force equation Eq. (5.41) yields

∇p = j×B. (5.47)

This is valid provided(
ρ
∂u

∂t

)
/(j×B) ∼ nmiωu

enuB
∼ ω

ωci
� 1. (5.48)

Using Eq. (5.47), the right side of Eq. (5.46) can be written

1

en
(j×B −∇pe) =

∇pi

en
(5.49)

and can be ignored for low ion temperature or when the plasma fluid velocity is
large [left side of Eq. (5.46)] and the magnetic field strong:(∇pi

en

)
/(u×B) ∼ nmiv

2
thi

neLuB
=

v2
thi

uLωci
∼ rL

L

vthi

u
.

Finally, equations of continuity for mass and charge are obtained from the
sum and difference of the ion and electron continuity equations. The full set of
single fluid equations becomes

ρ
∂u

∂t
= j×B −∇p + ρg (5.50)

E + u×B = ηj (5.51)

∂ρ

∂t
+ ∇.(ρu) = 0 (5.52)

∂σ

∂t
+ ∇.j = 0 (5.53)

∇×E = −∂B

∂t
(5.54)

∇×B = µ0j (5.55)

p = Cnγ (5.56)
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5.6 Diffusion in Fully Ionized Plasma

We assume equilibrium (∂/∂t = 0) and neglect gravity to obtain

∇p = j×B (5.57)

E + u×B = ηj (5.58)

E‖ = η‖j‖ parallel component. (5.59)

The perpendicular component of the diffusive flow is, as usual, found by taking
the cross product with B:

E×B + (u⊥×B)×B = η⊥j×B = η⊥∇p (5.60)

to give

u⊥ =
E×B

B2
− η⊥

B2
∇p (5.61)

where the first term is the bulk plasma drift uE and the second term is the
diffusion velocity of the single plasma fluid under the action of a pressure gradient.

For a cylindrical plasma with electric field and pressure gradient in the radial
direction

uθ = −Er

B

ur = − η⊥
B2

∂p

∂r
(5.62)

and the radial fluid flux is

Γ⊥ = nu⊥

= −η⊥
n(kBTe + kBTi)

B2
∇n. (5.63)

(Note that we would have also recovered the diamagnetic drift if we had retained
the term (j×B) in the Ohm’s law.) This is reminiscent of Fick’s law

Γ⊥ = −D⊥∇n (5.64)

with the fully ionized magnetized plasma diffusion coefficient given by

D⊥ =
η⊥
∑

nskBTs

B2
(5.65)

We remark the following important properties:

1. The diffusion coefficient scales with 1/B2 as for the weakly ionized case,
implying a random walk of step length rL. To see this note that, for fixed
resistivity, D⊥ ∼ T/B2 ∼ v2/B2 ∼ v2/ω2

c ∼ r2
L

2. η decreases with T , η ∼ T−3/2 so that diffusion decreases as the temperature
increases! This is a favourable scaling.

3. Diffusion is automatically ambipolar. Both species diffuse at the same rate -
this is a consequence of momentum conservation.
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5.6.1 Coulomb collisions in magnetoplasma

We have seen that there is very little energy transfer between unlike species due
to me � mi. By contrast however, it is only collisions between unlike charges
that can give rise to diffusion in a fully ionized magnetized plasma.

Because of conservation of momentum, the centre of mass in collisions between
like-charged particles remains unchanged (see Fig. 5.4). For unlike particles, the
biggest displacement is suffered for head-on collisions.

Before

After

Note
displacement of
centre of mass.

After 
90 degree collision

Before

B

Guiding centre

Figure 5.4: Left: Schematic showing particle displacements in direct Coulomb

collisions between like species in a magnetized plasma. Right: Collisons between

unlike particles effectively displace guiding centres.

Because of the mass disparity, electrons bounce off almost staionary ions and
execute a random walk of step length rL. In general, ions only move slightly, but
very often. However, conservation of momentum implies that the diffusion rate
for ions and electrons is the same (no charge separation, no electric fields).

5.6.2 Other types of diffusion

Experiments suggest that diffusion actually scales like 1/B rather than 1/B2.
This is bad. The empirically determined Bohm diffusion coefficient is given by

DB =
1

16

kBTe

eB
. (5.66)

Observe that this scales with temperature. How could this situation arise? It is
now believed that excess, or anomalous diffusion is caused by instabilities and
convective drifts that arise spontaneously in the plasma. If we let the escape
velocity be proportional to the E/B drift velocity

Γ⊥ = nu⊥ ∝ nE/B.
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However,

eφ ∼ kBTe so E ∼ φ/L ∼ kBTe/eL

and the driven flux is

Γ⊥ ≈ γ
n

L

kBTe

eB

∼ −γ
kBTe

eB
∇n

≈ −DB∇n. (5.67)

We have also already encountered neoclassical diffusion. In this theory, par-
ticles make collisions (reflections) with bumps in the magnetic topology. This
gives rise to banana orbits and a step length for diffusion that can be signifi-
cantly greater than the Larmor radius. The variation of perpendicular diffusion
constant with particle collision frequency for particle confinement in a toroidal
magnetic confinement device is shown in Fig. 5.5.

ν

D

(log 
scale)

Plateau regime

Classical diffusion

Collision frequency

νB

Figure 5.5: The theoretical perpendicular diffusion coefficient versus collision

frequency for a tokamak. The region of enhanced diffusion occurs in the so called

”plateau” regime centered about the particle bounce frequency in the magnetic

mirrors.
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Problems

Problem 5.1 A cylindrical plasma column of radius a contains a coaxial magnetic

field B = B0ẑ and has pressure profile

p = p0 cos2 (πr/2a)

(a) Calculate the maximum value of p0

(b) Using this value of p0 calculate the diamagnetic current j(r) and the total field

B(r).

(c) Show j(r), B(r) and p(r) on a graph.

Problem 5.2 A cylindrically symmetric plasma column in a uniform B-field has

n(r) = n0 exp(−r2/r2
0) and ni = ne = n0 exp (eφ/kTe)

(a) Show that the E/B drift and the electron diamagnetic drift are equal and opposite.

(b) Show that the plasma rotates as a solid body

(c) Find the diamagnetic current density as a function of radius.

(d) Evaluate jD in A/m2 for B = 0.4T, n0 = 1016m−3, kTe = kTi = 0.25eV and

r = r0 = 1 cm.
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