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Preface v

Preface

Primary objective of this lecture note is to provide a basic text for the students to study
plasma physics and controlled fusion researches. Secondary objective is to offer a reference book
describing analytical methods of plasma physics for the researchers. This was written based
on lecture notes for a graduate course and an advanced undergraduate course those have been
offered at Department of Physics, Faculty of Science, University of Tokyo.

In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbits
of ion and electron are described in several magnetic field configurations. Chapter 4 formulates
Boltzmann equation of velocity space distribution function, which is the basic relation of plasma
physics.

From ch.5 to ch.9, plasmas are described as magnetohydrodynamic (MHD) fluid. MHD equa-
tion of motion (ch.5), equilibrium (ch.6) and diffusion and confinement time of plasma (ch.7) are
described by the fluid model. Chapters 8 and 9 discuss problems of MHD instabilities whether
a small perturbation will grow to disrupt the plasma or will damp to a stable state. The basic
MHD equation of motion can be derived by taking an appropriate average of Boltzmann equa-
tion. This mathematical process is described in appendix A. The derivation of useful energy
integral formula of axisymmetric toroidal system and the analysis of high n ballooning mode are
described in appendix B.

From ch.10 to ch.14, plasmas are treated by kinetic theory. This medium, in which waves and
perturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or even
amplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocity
of plasma particles is much smaller than the phase velocity of wave. Because of its simplicity,
the dielectric tensor of cold plasma can be easily derived and the properties of various wave
can be discussed in the case of cold plasma. If the refractive index becomes large and the
phase velocity of the wave becomes comparable to the thermal velocity of the plasma particles,
then the particles and the wave interact with each other. In ch.11, Landau damping, which
is the most characteristic collective phenomenon of plasma, as well as cyclotron damping are
described. Chapter 12 discusses wave heating (wave absorption) in hot plasma, in which the
thermal velocity of particles is comparable to the wave phase velocity, by use of the dielectric
tensor of hot plasma. In ch.13 the amplification of wave, that is, the growth of perturbation
and instabilities, is described. Since long mathematical process is necessary for the derivation of
dielectric tensor of hot plasma, its processes are described in appendix C. In ch.14 instabilities
driven by energetic particles, that is, fishbone instability and toroidal Alfvén eigenmodes are
described.

In ch.15, confinement researches toward fusion grade plasmas are reviewed. During the last
decade, tokamak experiments have made remarkable progresses. Now realistic designs of toka-
mak reactors have been actively pursued. In ch.16, research works of critical subjects on tokamak
plasmas and reactors are explained. As non-tokamak confinement systems, reversed field pinch,
stellarator, tandem mirror are described in ch.17. Elementary introduction of inertial confine-
ment is added in ch.18.

Readers may have impression that there is too much mathematics in this lecture note. However
there is a reason for it. If a graduate student tries to read and understand, for examples,
frequently cited short papers on the analysis of high n ballooning mode by Connor, Hastie,
Taylor, fishbone instability by L.Chen, White, Rosenbluth without preparative knowledge, he
must read and understand a few tens of cited references and references of references. I would
guess from my experience that he would be obliged to work hard for a few months. It is one
of motivation to write this lecture note to save his time to struggle with the mathematical
derivation so that he could spend more time to think physics and experimental results.
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This lecture note has been attempted to present the basic physics and analytical methods
which are necessary for understanding and predicting plasma behavior and to provide the recent
status of fusion researches for graduate and senior undergraduate students. I also hope that it
will be a useful reference for scientists and engineers working in the relevant fields.

September 2000
Kenro Miyamoto

Professor Emeritus Unversity of Tokyo

miyamoto@phys.s.u-tokyo.ac.jp



Ch.1 Nature of Plasma

1.1 Introduction

As the temperature of a material is raised, its state changes from solid to liquid and then
to gas. If the temperature is elevated further, an appreciable number of the gas atoms are
ionized and become the high temperature gaseous state in which the charge numbers of ions and
electrons are almost the same and charge neutrality is satisfied in a macroscopic scale.

When the ions and electrons move collectively, these charged particles interact with coulomb
force which is long range force and decays only in inverse square of the distance r between the
charged particles. The resultant current flows due to the motion of the charged particles and
Lorentz interaction takes place. Therefore many charged particles interact with each other by
long range forces and various collective movements occur in the gaseous state. The typical cases
are many kinds of instabilities and wave phenomena. The word “plasma’” is used in physics
to designate the high temperature ionized gaseous state with charge neutrality and collective
interaction between the charged particles and waves.

When the temperature of a gas is T'(K), the average velocity of the thermal motion, that is,
thermal velocity vt is given by

mva /2 = KT/2 (1.1)

where k is Boltzmann constant £ = 1.380658(12) x 10723 J/K and T indicates the thermal
energy. Therefore the unit of k7" is Joule (J) in MKSA unit. In many fields of physics, one
electron volt (eV) is frequently used as a unit of energy. This is the energy necessary to move
an electron, charge e = 1.60217733(49) x 10~ Coulomb, against a potential difference of 1 volt:

leV = 1.60217733(49) x 10719 J.

The temperature corresponding to the thermal energy of 1eV is 1.16x10* K(= e/x). The ioniza-
tion energy of hydrogen atom is 13.6 eV. Even if the thermal energy (average energy) of hydrogen
gas is 1eV, that is '~ 10* K, small amount of electrons with energy higher than 13.6eV exist
and ionize the gas to a hydrogen plasma.

Plasmas are found in nature in various forms (see fig.1.1). There exits the ionosphere in the
heights of 70~500km (density n ~ 1012m=3, kKT ~ 0.2eV). Solar wind is the plasma flow origi-
nated from the sun with n ~ 10~"m™3, kT ~ 10eV. Corona extends around the sun and the
density is ~ 10'*m™ and the electron temperature is ~ 100eV although these values depend
on the different positions. White dwarf, the final state of stellar evolution, has the electron
density of 1039~30 m~3. Various plasma domains in the diagram of electron density n(m~=3) and
electron temperature k7" (eV) are shown in fig.1.1. Active researches in plasma physics have
been motivated by the aim to create and confine hot plasmas in fusion researches. Plasmas play
important roles in the studies of pulsars radiating microwave or solar X ray sources observed
in space physics and astrophysics. The other application of plasma physics is the study of the
earth’s environment in space. Practical applications of plasma physics are MHD (magnetohy-
drodynamic) energy conversion for electric power generation, ion rocket engines for space crafts,
and plasma processing which attracts much attention recently.

1.2 Charge Neutrality and Landau Damping

One of the fundamental property of plasma is the shielding of the electric potential applied to
the plasma. When a probe is inserted into a plasma and positive (negative) potential is applied,
the probe attracts (repulses) electrons and the plasma tends to shield the electric disturbance.
Let us estimate the shielding length. Assume that the ions are in uniform density (n; = ng)
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and there is small perturbation in electron density n, or potential ¢. Since the electrons are in
Boltzmann distribution usually, the electron density n. becomes

ne = ng exp(ep/kTe) ~ no(l + ed/rT,).

Poisson’s eqation is

E=-Vo, V(E)=-aV¢=p=—c(ne—ny)=——'0
S
and
T,\ /2 1 KT\ /2
V3¢ = Ai; Ap = <60”€2 ) = 7.45 x 10° (n— “e > (m) (1.2)
D (&} e

where n, is in m ™ and kT, /e is in eV. When n, ~ 102%cm =3, kT, /e ~ 10keV, then A\p ~ 75um.
In spherically symmetric case, Laplacian V2 becomes V2¢ = (1/r)(0/dr)(rd¢/dr) and the
solution is

_ 4 exp(—r/Ap)
dmeg r

It is clear from the foregoing formula that Coulomb potential q/4mepr of point charge is shielded
out to a distance Ap. This distance A\p is called the Debye length. When the plasma size is a
and a > Ap is satisfied, then plasma is considered neutral in charge. If a < Ap in contrary,
individual particle is not shielded electrostatically and this state is no longer plasma but an
assembly of independent charged particles.

The number of electrons included in the sphere of radius Ap is called plasma parameter and
is given by

3/2
3 G_OHTQ 1
nxL = <€ . > —né/Q. (1.3)

When the density is increased while keeping the temperature constant, this value becomes small.
If the plasma parameter is less than say ~1, the concept of Debye shielding is not applicable
since the continuity of charge density breaks down in the scale of Debye length. Plasmas in the
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region of nA3 > 1 are called classical plasma or weakly coupled plasma, since the ratio of electron

thermal energy kT, and coulomb energy between electrons Eeouomp = €2/4meqd (d ~ n~1/3 ig
the average distance between electrons with the density n) is given by

KT,

——C  —An(nA})?? (1.4)

Ecoulomb
and nA3 > 1 means that coulomb energy is smaller than the thermal energy. The case of
n/\?D < 1 is called strongly coupled plasma (see fig.1.1). Fermi energy of degenerated electron

gas is given by ep = (h?/2m,)(37%n)%/3. When the density becomes very high, it is possible to

become ep > KkTe. In this case quantum effect is more dominant than thermal effect. This case
is called degenerated electron plasma. One of this example is the electron plasma in metal. Most
of plasmas in experiments are classical weakly coupled plasma.

The other fundamental process of plasma is collective phenomena of charged particles. Waves
are associated with coherent motions of charged particles. When the phase velocity vy, of
wave or perturbation is much larger than the thermal velocity vt of charged particles, the wave
propagates through the plasma media without damping or amplification. However when the
refractive index N of plasma media becomes large and plasma becomes hot, the phase velocity
vph = ¢/N (c is light velocity) of the wave and the thermal velocity vr become comparable
(vph = ¢/N ~ vr), then the exchange of energy between the wave and the thermal energy of
plasma is possible. The existence of a damping mechanism of wave was found by L.D. Landau.
The process of Landau damping involves a direct wave-particle interaction in collisionless plasma
without necessity of randamizing collision. This process is fundamental mechanism in wave
heatings of plasma (wave damping) and instabilities (inverse damping of perturbations). Landau
damping will be described in ch.11, ch.12 and appendix C.

1.3 Fusion Core Plasma

Progress in plasma physics has been motivated by how to realize fusion core plasma. Necessary
condition for fusion core plasma is discussed in this section. Nuclear fusion reactions are the
fused reactions of light nuclides to heavier one. When the sum of the masses of nuclides after
a nuclear fusion is smaller than the sum before the reaction by Am, we call it mass defect.
According to theory of relativity, amount of energy (Am)c? (c is light speed) is released by the
nuclear fusion.

Nuclear reactions of interest for fusion reactors are as follows (D; deuteron, T;triton, He?; helium-
3, Li; lithium):

(1) D+D—T(1.01 MeV)+p(3.03 MeV)

(2) D+D— He?(0.82 MeV)+n(2.45 MeV)

(3) T+D— He(3.52MeV)+n(14.06 MeV)
(4) D+He® — He*(3.67 MeV) +p(14.67MeV)
(5) Li%+n—T+He'+4.8 MeV

(6) Li"+n(2.5MeV)—T+He*+n

where p and n are proton (hydrogen ion) and neutron respectively (1 MV=10°eV). Since the
energy released by chemical reaction of Hy + (1/2)O2 — H20 is 2.96 eV, fusion energy released
is about million times as large as chemical one. A binding energy per nucleon is smaller in
very light or very heavy nuclides and largest in the nuclides with atomic mass numbers around
60. Therefore, large amount of the energy can be released when the light nuclides are fused.
Deuterium exists aboundantly in nature; for example, it comprises 0.015 atom percent of the
hydrogen in sea water with the volume of about 1.35 x 10% km? .

Although fusion energy was released in an explosive manner by the hydrogen bomb in 1951,
controlled fusion is still in the stage of research development. Nuclear fusion reactions were
found in 1920’s. When proton or deuteron beams collide with target of light nuclide, beam
loses its energy by the ionization or elastic collisions with target nuclides and the probability
of nuclear fusion is negligible. Nuclear fusion researches have been most actively pursued by
use of hot plasma. In fully ionized hydrogen, deuterium and tritium plasmas, the process of
ionization does not occur. If the plasma is confined in some specified region adiabatically, the
average energy does not decrease by the processes of elastic collisions. Therefore if the very hot
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D-T plasmas or D-D plasmas are confined, the ions have velocities large enough to overcome
their mutual coulomb repulsion, so that collision and fusion take place.

Let us consider the nuclear reaction that D collides with T. The effective cross section of T
nucleous is denoted by o. This cross section is a function of the kinetic energy E of D. The
cross section of D-T reaction at F = 100keV is 5 x 10724 cm? . The cross sections o of D-T, D-
D, D-He? reaction versus the kinetic energy of colliding nucleous are shown in fig.1.2(a)."? The
probability of fusion reaction per unit time in the case that a D ion with the velocity v collides
with T ions with the density of ny is given by nrov (we will discuss the collision probability
in more details in sec.2.7). When a plasma is Maxwellian with the ion temperature of T , it is
necessary to calculate the average value (ov) of ov over the velocity space. The dependence of
(ov) on ion temperature 7} is shown in fig.1.2(b).2 A fitting equation of (cv) of D-T reaction as
a function of kKT in unit of keV is?

3.7x 10718 20 kT 5.45
) = — H(kT) = —
(ov)(m™) H(rT) x (KT)2/3 exp ( (nT)l/?’) ’ (1) 37 + 3+ KT (1+ KT/37.5)%8

(1.5)

Figure 1.3 shows an example of electric power plant based on D-T fusion reactor. Fast neutrons
produced in fusion core plasma penetrate the first wall and a lithium blanket surrounding the
plasma moderates the fast neutrons, converting their kinetic energy to heat. Furthermore the
lithium blanket breeds tritium due to reaction (5),(6). Lithium blanket gives up its heat to
generate the steam by a heat exchanger; steam turbine generates electric power. A part of
the generated electric power is used to operate heating system of plasma. As « particles are
charged particles, « particles can heat the plasma by Coulomb collisions directly (see sec.2.6).
The total heating power P et is the sum of « particle heating power P, and the heating power
P,y by the external heating system. The necessary total heating power to sustain the plasma in
steady state must be equal to the energy loss rate of fusion core plasma. Therefore good energy
confinement (small energy loss rate) of hot plasma is the most important key issue.

The thermal energy of plasma per unit volume is given by (3/2)nk(Ti + T,). This thermal
energy is lost by thermal conduction and convective losses. The notation P, denotes these
energy losses of the plasma per unit volume per unit time (power loss per unit volume). There
is radiation loss R due to bremsstrahlung of electrons and impurity ion radiation in addition to
Pi,. The total energy confinement time g is defined by

= (3/2)nk(Te + T;) - 3nkT ' (1.6)
PL+ R P+ R
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Fig.1.3 An electric power plant based on a D-T fusion reactor

The necessary heating input power Pje,¢ is equal to P, + R . In the case of D-T reaction, the
sum of kinetic energies Q, = 3.52MeV of a particle (He* ion) and Q,, = 14.06 MeV of neutron
is Qnr=17.58 MeV per 1reaction (Qy: Q,=0.8:0.2).

Since the densities of D ions and T ions of equally mixed plasma are n/2 , number of D-T
reaction per unit time per unit volume is (n/2)(n/2){ov), so that fusion output power per unit
volume Pyr is given by

Py = (n/2)(n/2){ov)Qnr. (1.7)

When the fusion powers by the neutron and « particle are denoted by P, and P, respectively,
then P,=0.8Pxr and P,=0.2Pnyr. Denote the thermal-to-electric conversion efficiency by 7
and heating efficiency (ratio of the deposit power into the plasma to the electric input power of
heating device) by Mneat- Then the total heating power Ppeay is

Pheat = (0‘877e1777heat + O-Q)f)NF'

The burning condition is

3nkT
Picat = PL+ R = = nPxr (1.8)
TE
where
1 = (0.87e1"heat + 0.2),
that is
T
3Ink _ nQNF n2(av>
TR 4
12T
nmgE > — 1.9
Y Qe (ov) (1.9)

The right-hand side of the last foregoing equation is the function of temperature T' only. When
kT = 10*eV and  ~ 0.3 (y ~ 0.4, ng ~ 0.4, Nheat ~ 0.8), the necessary condition is
nte > 1.7 x 102 m~3 - sec. The condition of D-T fusion plasma in the case of 7 ~ 0.3 is shown
in fig.1.4. In reality the plasma is hot in the core and is cold in the edge. For the more accurate
discussion, we must take account of the profile effect of temperature and density and will be
analyzed in sec.16.11.

The condition Pyeat = Pnr is called break even condition. This corresponds to the case of n =1
in the condition of fusion core plasma. The ratio of the fusion output power due to a particles
to the total is Q,/@nr = 0.2. Since « particles are charged particles, a particles can heat
the plasma by coulomb collision (see sec.2.8). If the total kinetic energy (output energy) of «
particles contributes to heat the plasma, the condition Pe.t = 0.2PxF can sustain the necessary
high temperature of the plasma without heating from outside. This condition is called ignition
condition, which corresponds the case of n = 0.2.
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Ch.2 Plasma Characteristics

2.1 Velocity Space Distribution Function, Electron and Ion Temperatures

Electrons as well as ions in a plasma move with various velocities. The number of electrons
in a unit volume is the electron density ne and the number of electrons dne(v,) with the z
component of velocity between v, and v, + dv, is given by

dne(vy) = fe(vy)dvg.

Then fo(v;) is called electron’s wvelocity space distribution function. When electrons are in
thermally equilibrium state with the electron temperature T, the velocity space distribution
function becomes following Maxwell distribution:

1/2 2
fe(vz) = ne (%) exp <_ﬂ;x> ) B = :;f .

By the definition the velocity space distribution function satisfies following relation:

/_O:O fe(vg)dvy = ne.

Maxwell distribution function in three dimensional velocity space is given by

3/2 9 2. .2
fe(vz,vy,v,) = ne ( T ) exp <_me(vx U UZ)) : (2.1)

2K, 2k,

Ton distribution function is also defined by the same way as the electron’s case. The mean square
of velocity v2 is given by

1 [ kT
V3 = - [m V2 f (vg)dv, = g (2.2)
The pressure p is
p=nkT.

Particle flux in the x direction per unit area I} , is given by

00 1/2
I, ,= / Ve f(vg)dv, =n <£> .
0

2mm

When an electron beam with the average velocity vy, is injected into a plasma with a Maxwell
distribution, the distribution function becomes humped profile as is shown in fig.2.1(b). Follow-
ing expression can be used for the modeling of the distribution function of a plasma with an
electron beam:

1/2 2 1/2 N2
B Me MV Me B Me(v, — Up)
fe(v:) = ne (27mTe> xp < 2HTQ> t ™ (2me) xp < 20T}, ) ‘
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2.2 Plasma Frequency, Debye Length

Let us consider the case where a small perturbation occurs in a uniform plasma and the
electrons in the plasma move by the perturbation. It is assumed that ions do not move because
the ion’s mass is much more heavy than electron’s. Due to the displacement of electrons, electric
charges appear and an electric field is induced. The electric field is given by Poisson’s equation:

eV - E = —e(ne — no).

Electrons are accelerated by the electric field:

dv
me— = —ek.
“dt
Due to the movement of electrons, the electron density changes:
One
V- (nev) = 0.
ot + (nev)
Denote ne —ng = ny and assume |n1| < ng, then we find
ov 8’01
eV - E = —enq, mea = —eF, E—l—nov v=0.

For simplicity the displacement is assumed only in the x direction and is sinusoidal:
ni(x,t) = ny exp(ikx — iwt).

Time differential 9/0t is replaced by —iw and 9/90z is replaced by ik, then
tkeg B = —enyq, — wmev = —ek, —twny = —ikngv

so that we find

2
W= 20 (2.3)
€0Me

This wave is called electron plasma wave or Langmuir wave and its frequency is called electron
plasma frequency Ile:

nee? 1/2 o e \ /2
II, = <€0me> =5.64 x 10 (1020) rad/sec.

There is following relation between the plasma frequency and Debye length Ap:

T 1/2
Apll, = (” e) = U

MmMe




2.3 Cyclotron Frequency, Larmor Radius 9

Y

K. &

/

Fig.2.2 Larmor motion of charged particle in magnetic field

2.3 Cyclotron Frequency, Larmor Radius

The equation of motion of charged particle with the mass m and the charge ¢ in an electric
and magnetic field E, B is given by

dov

mgy = q(E+v x B). (2.4)

When the magnetic field is homogenous and is in the z direction and the electric field is zero,
the equation of motion becomes v = (¢B/m)(v x b) (b = B/B) and

vy = —vg sin(2t +9),

vy = v cos(§2t +9),

Vz = V20,
B

0=-1 (2.5)
m

The solution of these equation is a spiral motion around the magnetic line of force with the
angular velocity of {2 (see fig.2.2). This motion is called Larmor motion. The angular frequency
2 is called cyclotron (angular) frequency. Denote the radius of the orbit by pq, then the

centrifugal force is mv? /pq and Lorentz force is qu; B. Since both forces must be balanced, we
find

_omuy
lq| B

pQ (2.6)

This radius is called Larmor radius. The center of Larmor motion is called guiding center.
Electron’s Larmor motion is right-hand sence (2. > 0), and ion’s Larmor motion is left-hand
sence (£ < 0) (see fig.2.2). When B = 1T, kT = 100eV, the values of Larmor radius and
cyclotron freqency are given in the following table:

B=1T, kT=100eV electron 0 proton
thermal velocity vy = (kT/m)1/? | 42 x10°m/s 9.8 x 10*m/s
Larmor radius pgq 23.8 pm 10.2mm

(angular) cyclotron frequency 2 1.76 x 101t /s —9.58 x 107 /s
cyclotron freqeuncy £2/2w 28 GHz —15.2 MHz
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Fig.2.3 Drift motion of guiding center in electric and gravitational field (conceptional drawing).
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Fig.2.4 Radius of curvature of line of magnetic force

2.4 Drift Velocity of Guiding Center

When a uniform electric field E perpendicular to the uniform magnetic field is superposed,
the equation of motion is reduced to

du

may =q(u x B)

by use of

v =ug + u, uE:EXb. (2.7)
B
Therefore the motion of charged particle is superposition of Larmor motion and drift motion ug
of its guiding center. The direction of guiding center drift by E is the same for both ion and
electron (fig.2.3). When a gravitational field g is superposed, the force is mg, which corresponds
to gF in the case of electric field. Therefore the drift velocity of the guiding center due to the
gravitation is given by

gxb
n

m
= — b = —
Ug qB(gX )

. (2.8)
The directions of ion’s drift and electron’s drift due to the gravitation are opposite with each
other and the drift velocity of ion guiding center is much larger than electron’s one (see fig.2.3).
When the magnetic and electric fields change slowly and gradually in time and in space (jw/2| <
1,pa/R < 1), the formulas of drift velocity are valid as they are. However because of the
curvature of field line of magnetic force, centrifugal force acts on the particle which runs along
a field line with the velocity of v|. The acceleration of centrifugal force is

]
Geurv = En
where R is the radius of curvature of field line and mn is the unit vector with the direction from
the center of the curvature to the field line (fig.2.4).
Furthermore, as is described later, the resultant effect of Larmor motion in an inhomogeneous
magnetic field is reduced to the acceleration of

v? /2
gvs = — J'B/ VB.
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Therefore drift velocity of the guiding center due to inhomogenous curved magnetic field is given
by the drift approxzimation as follows:

2
_ L (Y viVB
Ug =~ <Rn 5 g5 | * b. (2.9)

The first term is called curvature drift and the second term is called VB drift. Since VX B = pgj,
the vector formula reduces

1
ﬁV(B-B):(hV)B—Fbx(VxB):%(Bb)—kbxuoj

0B ob Vp 0B n Vp
=gt By Ty = b B

r "B
We used the following relation (see fig.2.4)
ob  n

ol R

Then we have

"Xb_(@Jr @)Xb
R B Hope '

If Vp is much smaller than VB?/(2u0), we find

v, = _LUEUZ
=70 R '

The parallel motion along the magnetic field is given by

dyj mv? /2
mE = qE” + mg|| — B V”B

where [ is the length along the field line.

Let us consider the effect of inhomogeneity of magnetic field on gyrating charged particle. The
x component of Lorentz force F1, = qu x B perpendicular to the magnetic field (z direction)
and the magnitude B of the magnetic field near the guiding center are

Fiy = quyB = —|q|v cos 0B

0B 0B
B = By + —pqcosf + —pqsinb.
ox dy

The time average of z component of Lorentz force is given by (Fi,) = 1(0B/0z)(—|q|)v1 po and
the y component is also given by the same way, and we find (see fig.2.5)

_mvﬁ_/2

<FL>J_ = B

V,B.

Next it is necessary to estimate the time average of z component of Lorentz force. The equation
V - B = 0 near the guiding center in fig.2.5 becomes B, /r + 0B, /0r + 0B, /0z = 0 and we find

_ _ 0B,  mw?l/20B
(FL.) = —(que By) = |qvLpa = i

since 7 is very small. Thus the necessary expression of gy g is derived.
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Fig.2.5 Larmor motion in inhomogeneous magnetic field.

2.5 Magnetic Moment, Mirror Confinement, Longitudinal Adiabatic Constant

A current loop with the current I encircling the area S has the magnetic moment of p,, = 5.
Since the current and encircling area of gyrating Larmor motion are I = qf2/27, S = 7pd
respectively, it has the magnetic moment of

g0 s mui
Hm =5 P02 = Hp

(2.10)

This physical quantity is adiabatically invariant as is shown later in this section. When the
ma%netic field changes slowly, the magnetic moment is conserved. Therefore if B is increased,
mv{ = pmB is also increased and the particles are heated. This kind of heating is called
adiabatic heating.

Let us consider a mirror field as is shown in fig.2.6, in which magnetic field is weak at the
center and is strong at both ends of mirror field. For simplicity the electric field is assumed to be
zero. Since Lorentz force is perpendicular to the velocity, the magnetic field does not contribute
the change of kinetic energy and

2
mu 2 2
5 I m;}l = m; = F = const. (2.11)

Since the magnetic moment is conserved, we find

2) 1/2 2) 1/2
vy == <EE — vi) ==+ <v2 — EHmB> .

When the particle moves toward the open ends, the magnetic field becomes large and v becomes
small or even zero. Since the force along the parallel direction to the magnetic field is —um V| B,
the both ends of the mirror field repulse charged particles as a mirror reflects light. The ratio
of magnitude of magnetic field at open end to the central value is called mirror ratio:

Let us denote the parallel and perpendicular components of the velocity at the mirror center
by vp and v respectively. The value vi at the position of maximum magnetic field By is

given by

If this value is larger than v? = v3, this particle can not pass through the open end, so that the
particle satisfying the following condition is reflected and is trapped in the mirror field:

2
V1o BO 1
— > — = —. 2.12
( () ) By Rwm (212)
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Fig.2.6 Mirror field and loss cone in V|| -vL space.

Particles in the region where sinf = v /vy satisfies

. 1
sin?f < —
M

are not trapped and the region is called loss cone in v -v, space (see Fig.2.6).

Let us check the invariance of i, in the presence of a slowly changing magnetic field (|0B/dt| <
|£2B]). Scalar product of v, and the equation of motion is

dv d (mvi
muv, - = B

w._9d _ "E|).
at  dt ) q(vi-EL)

During one period 27/|{2| of Larmor motion, the change AW of the kinetic energy W, = mv? /2
is

AWJ_ZQ/(,UJ_'EJ_)dt:q%EJ_'dSZQ/(VXE"I’L)dS

where §ds is the closed line integral along Larmor orbit and [ dS is surface integral over the
encircled area of Larmor orbit. Since V x E = —0B/0t, AW is

B
ot

The change of magnetic field AB during one period of Larmor motion is AB = (9B/0t)(2n/|12|),
we find

0B
AW, = —Q/ ot -ndS = |q|7p5,

AW, =

= —w, ==

mvﬁ_ AB AB
2 B B

and
Um = ZL = const
m B .

When a system is periodic in time, the action integral § pdg, in terms of the canonical vari-
ables p, ¢, is an adiabatic invariant in general. The action integral of Larmor motion is J, =
(—mpa2)2mpq = —(4mm/q)m. J1 is called transversal adiabatic invariant.

A particle trapped in a mirror field moves back and forth along the field line between both
ends. The second action integral of this periodic motion

J) = m]{v”dl (2.13)
is also another adiabatic invariant. J is called longitudinal adiabatic invariant. As one makes

the mirror length [ shorter, (v)) increases (for J| = 2m(v|)! is conserved), and the particles are
accelerated. This phenomena is called Fermi acceleration.
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Fig.2.7 Probability of collision of a sphere a with spheres b.

The line of magnetic force of mirror is convex toward outside. The particles trapped by the
mirror are subjected to curvature drift and gradient B drift, so that the trapped particles move
back and forth, while drifting in 6 direction. The orbit (r, #) of the crossing point at z = 0
plane of back and forth movement is given by Jj (7,0, jim, £) = const.

2.6 Coulomb Collision Time, Fast Neutral Beam Injection

The motions of charged particles were analyzed in the previous section without considering
the effects of collisions between particles. In this section, phenomena associated with Coulomb
collisions will be discussed. Let us start from a simple model. Assume that a sphere with the
radius @ moves with the velocity v in the region where spheres with the radius b are filled with
the number density n (see fig.2.7). When the distance between the two particles becomes less
than a + b, collision takes place. The cross section o of this collision is o = 7(a + b)2. Since the
sphere a moves by the distance | = vt during dt, the probability of collision with the sphere b
is

nlo = novdt

since nl is the possible number of the sphere b, with which the sphere a within a unit area of
incidence may collides, and nlo is the total cross section per unit area of incidence during the
period of §t. Therefore the inverse of collision time t.oy is

(tcou)_l = nNov.

In this simple case the cross section o of the collision is independent of the velocity of the
incident sphere a. However the cross section is dependent on the incident velocity in general.
Let us consider strong Coulomb collision of an incident electron with ions (see fig.2.8) in
which the electron is deflected strongly after the collision. Such a collision can take place when
the magnitude of electrostatic potential of the electron at the closest distance b is the order of
the kinetic energy of incident electron, that is,
Ze? Mev?2

€

Aegh 2

The cross section of the strong Coulomb collision is o = 7b?. The inverse of the collision time

Fig.2.8 Coulomb collision of electron with ion.



2.6 Coulomb Collision Time, Fast Neutral Beam Injection 15

of the strong Coulomb collision is

1 2 nim(Ze?)v, Z2etn,
= N{0Ve = NUeTH* = = 5 .
teoll (Ameomev2/2)?  Amegm2u?

Since Coulomb force is long range interaction, a test particle is deflected by small angle even
by a distant field particle, which the test particle does not become very close to. As is described
in sec.1.2, the Coulomb field of a field particle is not shielded inside the Debye sphere with
the radius of Debye length Ap and there are many field particles inside the Debye sphere in the
usual laboratory plasmas (weakly coupled plasmas). Accumulation of many collisions with small
angle deflection results in large effect. When the effect of the small angle deflection is taken into
account, the total Coulomb cross section increases by the factor of Coulomb logarithm

A
ln/l:ln<2)\—D>:/Dldr:15N20.
b b/2 T

The time derivative of the momentum p parallel to the incident direction of the electron is

given by use of the collision time 7¢; as follows: 12
doy __my
dt Tel” ’
1 Z2e*n;In A
Sty e (2.14)
Te1|| TEYMg Vg

where T indicates the deceleration time of an electron by ions.

When a test particle with the charge ¢, the mass m and the velocity v collides with the field
particles with the charge ¢*, the mass m* and the thermal velocity v}, = (kT/ m*)1/2 in general,
the collision time of the test particle is given by®?

1 Cg?n*ln A qq* n*\ 2 InA
= = 2.1
< ) A ( (2.15)

7| 4redmmy v’ eom my/m)vdn*

under the assumption of v > v}. m, is the reduced mass m, = mm*/(m + m*). Taking the
average of (m/2)v* = (3/2)xT, 1/7) becomes

1 2 *2 * /1

T 212 q2q - ?2 3/2° (2.16)

T 3 / 127eg(my/m 12)(kT)3/
This collision time in the case of electron with ions is

1 Z%e*n;In A

Teil|  3Y212mwedme’ “(kT)3/2
This collision time of electron with ions is within 20% of Spitzer’s result?

1 Z%e*niln A
¢ (2.18)

Tei|| Spitzer B 51,67‘(’1/26%771;/2(”7‘6)3/2'

When an ion with the charge Z and the mass m; collides with the same ions, the ion-ion collision
time is given by

T Z4%*n;In A (2.19)
Tii| 31/267T6(2)m11/2(/£ﬂ)3/2 ' '
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Fig.2.9 Elastic collision of test particle M and field particle m in laboratory system (a) and
center-of-mass system (b).

Electron-electron Coulomb collision time can be derived by substitution of m; — m,. and
Z — 1 into the formula of 7.

1 4In A
- fe€ 2 (2.20)

Tee|| B 31/267T6gmé/2(/€Te)3/2 '

However the case of ion to electron Coulomb collision is more complicated to treat because
the assumption v; > v} is no longer hold. Let us consider the case that a test particle with
the mass M and the velocity vs collides with a field particle with the mass m. In center-of-
mass system where the center of mass is rest, the field particle m moves with the velocity of
ve = —Muvg/(M +m) and the test particle M moves with the velocity of vs —v. = mvg/(M +m)
(see fig.2.9). Since the total momentum and total kinetic energy of two particles are conserved
in the process of elastic collision, the velocities of the test particle and the field particle do not
change and two particles only deflect their direction by the angle of # in center-of -mass system.
The velocity vr and scattering angle ¢ of the test particle after the collision in laboratory system
are given by (see fig.2.9)

o (M? 4+ 2Mm cos § + m?)
§ (M + m)? ’

V8 = (Vs — Ve)? + Ve + 2(vs — ve)vecos b = v

msin 0
(M2 + 2Mm cos + m?2)1/2

sin g =

Denote the momentum and the kinetic energy of the test particle before and after the collision
by ps, Es, and pg, E¢ respectively, then we find

AE  E;—E, oMm

5 - F :—(M+m)2(1—cosé?).

When the average is taken by 6, we obtain the following relations in the case of m/M < 1:

PO .
E'T M o T M

From the foregoing discussion, the inverse of collision time 1/ Tie| Where a heavy ion collides

with light electrons is about me/m; times the value of 1/7 and is given by!2
I me Z2e*neIn A (2.21)
Tie| T (271')1/2377'6%771;/2(%716)3/2. '

When the parallel and perpendicular components of the momentum of a test particle are
denoted by p; and p, respectively and the energy by E, there are following relations

2 2
E:pll—’_pl

o2m
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We define the wvelocity diffusion time 7, in the perpendicular direction to the initial momentum

and the energy relaxation time 7¢ by

drt _pd
dt 1’
dr ~  E
dt 7€

respectively. 1/7, and 1/7¢ are given by!

1 ¢?n*In A B q¢?n*InA
71 2medv(mv)?  2medm2ud
I ¢Pn*In A B g?n*In A

¢ Aredm*o(mu?/2)  2redmm*u’

respectively under the assumption v > v7t.
In the case of electron to ion collision, we find

2

)
Teil Tei|

1 Me 2
€
Tei

mi Tei|

(2.22)

(2.23)

(2.24)

(2.25)

In the case of electron to electron collision, and ion to ion collision, we find

11 121
Teel  Tee| (Tee| - ETeiH) ’
11
T& T
and
1 1
Tii L - ?i||7
1 1
S
respectively.

In the case of ion to electron collision we have following relations:

1 Z2%e*n.In A Me

~ J—

(27r)3/263mé/2E1(/§Te)1/2 m;’

Tie |

I Z2%e*n.1n A 4

Tie® 47T6(%mé/2(liTe)3/2 32m)Y/2m;

where E; = (3/2)xT; is the kinetic energy of the ion.

meN

(2.26)

(2.27)

(2.28)
(2.29)

1
(2.30)

1 N %2.77 (2.31)
mi Tei||

Tie||

The inverse of collision time is called

collisional frequency and is denoted by v. The mean free path is given by A = 3Y/2vp 7.
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High energy neutral particle beams can be injected into plasmas across strong magnetic
fields. The neutral particles are converted to high-energy ions by means of charge exchange
with plasma ions or ionization. The high energy ions (massmy,, electric charge Zy,, energy Ey,)
running through the plasma slow down by Coulomb collisions with the plasma ions (m;, Z;) and
electrons (me, —e) and the beam energy is thus transferred to the plasma. This method is called
heating by neutral beam injection (NBI). The rate of change of the fast ion’s energy, that is, the
heating rate of plasma is

1 (Zve)?(Zie)? In An,

Pl

2, 3
; 2megmimy v,

and?

dE, Z2et In An, < me miZ} 4 ( meEh, )3/2) -

dt 4redmevn, m; Ne 3rl/2 \mykT,
when beam ion’s velocity vy is much less (say 1/3) than the plasma electron thermal velocity
and much larger (say 2 times) than the plasma ion thermal velocity. The first term in the right-
hand side is due to beam-ion collisions and the second term is due to beam-electron collisions
respectively. A critical energy E., of the beam ion, at which the plasma ions and electrons are

heated at equal rates is given by

1

Te

2

where Ay, A; are atomic weights of the injected ion and plasma ion respectively. When the
energy of the injected ion is larger than F.,, the contribution to the electron heating is dominant.
The slowing down time of the ion beam is given by

By _dF, e E \%/?
slowdown — = —= ] 1 )
Tslowd / (dEy/d) 15 n( + (EC>

1 Z2neetIn A
= mes 1;12 e, (2.34)
The  (2m)1/23mwedme’ (KT )3/2 b

2/3
i Z7
el ) (2.33)

< — B, = 14.8xT, Ay, (

where 7{, is the energy relaxation time of beam ion with electrons.

2.7 Runaway Electron, Dreicer Field

When a uniform electric field FE is applied to a plasma, the motion of a test electron is

dv
Me— = —eE — ———mv
dt Tee(V) ’
1 etln A
=NV =
Tee 2medmv’

The deceleration term decreases as v increases and its magnitude becomes smaller than the
acceleration term | — eFE)| at a critical value v,;. When v > v, the test particle is accelerated.
The deceleration term becomes smaller and the velocity starts to increase without limit. Such
an electron is called a runaway electron. The critical velocity is given by

M2, B e?nln A

2 47?6(2)E'

(2.35)
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The necessary electric field for a given electron velocity to be v, is called Dreicer field. Taking
In A = 20, we find

M2
eUcr _ —16 M :
5, = 5x 1077 —. (MKS units)

When n = 10 m™3, E = 1V/m, electrons with energy larger than 5keV become runaway
electrons.

2.8 Electric Resistivity, Ohmic Heating

When an electric field less than Dreicer field is applied to a plasma, electrons are accelerated
and are decelerated by collisions with ions to be an equilibrium state as follows:

me(ve - Ui) — _¢E

Tei
The current density j induced by the electric field becomes

2
. € NeTei
Jj=—enc(ve —vj) = E.
Me

The specific electric resistivity defined by nj = E is*

Melei||  (me)/?Ze?In A 3/
_ _ T 2.36
" nee? 51.6m1/2€2 (rTe) ( )
T -3/2
=52%x107°Z InA (“ e) . (Qm)
(&

The specific resistivity of a plasma with T, = 1keV, Z =1 is = 3.3 x 1078 Qm and is slightly
larger than the specific resistivity of copper at 20°C, 1.8 x 1078 Qm. When a current density
of j is induced, the power 1j? per unit volume contributes to electron heating. This heating
mechanism of electron is called Ohmic heating.

2.9 Variety of Time and Space Scales in Plasmas

Various kinds of plasma characteristics have been described in this chapter. Characteristic
time scales are a period of electron plasma frequency 27 /II,, an electron cyclotron period 27 /{2,
an ion cyclotron period 27 /|{2]|, electron to ion collision time 7, ion to ion collision time T
and electron-ion thermal energy relaxation time 7. AlfVen velocity va, which is a propagation
velocity of magnetic perturbation, is v3 = B2/(2p10pm) (pm is mass density)(see chs.5,10). Alf¢en
transit time 74 = L/va is a typical magnetohydrodynamic time scale, where L is a plasma
size. In a medium with the specific resistivity 7, electric field diffuses with the time scale of
TR = poL? /7 (see ch.5). This time scale is called resistive diffusion time.

Characteristic scales in length are Debye length Ap, electron Larmor radius pqe, ion Larmor
radius pqi, electron-ion collision mean free path A; and a plasma size L.

The relations between space and time scales are A\pIl, = Ve, pef2e = vTe, pailfZi| = vi,

Aei/Tei ™ 3129, i/ T =~ 312y, L/ma = va, where vr,, v are the thermal velocities v3, =
KTy /me, v4; = kTi/m;. The drift velocity of guiding center is vag, ~ &T/eBL = vr(pa/L).
Parameters of a typical D-T fusion plasma with ne = 102°m™3, kT, = xT} = 10keV, B =
5T, L =1m are followings:

2/, = 11.1ps (Il/2m = 89.8 GHz) Ap = 74.5 um
21 /82 = T.1ps (£2./2m =140 GHz) pPae = 47.6 ym
27 /|82 =26ns  (|£2|/2m = 38 MHz) pai = 2.88mm
Tei = 0.34ms Aei = 25 km

Tii = 5.6 ms )\ii = 9.5km
75 = 0.35

T = 0.13 us
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=12 x103s.
The ranges of scales in time and space extend to TrI1. ~ 10™, Aei/AD ~ 1.6 X 10® and the wide
range of scales suggests the variety and complexity of plasma phenomena.
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Ch.3 Magnetic Configuration and Particle Orbit

In this chapter, the motion of individual charged particles in a more general magnetic fields
is studied in detail. There are a large number of charged particles in a plasma, thus movements
do affect the magnetic field. But this effect is neglected here.

3.1 Maxwell Equations

Let us denote the electric intensity, the magnetic induction, the electric displacement and the
magnetic intensity by E, B, D, and H, respectively. When the charge density and current
density are denoted by p, and 7, respectively, Maxwell equations are

oB
E4+ — = 1
V x E+ T 0, (3.1)
oD
H-"—"=j 2
V x 5 7, (3.2)
V- B =0, (3.3)
V-D=p. (3.4)

p and j satisfy the relation

dp

Vgt =0 (3.5)

Eq.(3.2),(3.4) and

(3.5) are consistent with each other due to the Maxwell displacement current
0D /0t. From eq.(3.3)

3) the vector B can be expressed by the rotation of the vector A:
B =V x A. (3.6)

A is called vector potential. If eq.(3.6) is substituted into eq.(3.1), we obtain

v x (E + %—‘3) 0. (3.7)

The quantity in parenthesis can be expressed by a scalar potential ¢ and

E=-Vé——. (3.8)

Since any other set of ¢/ and A’

A =A— Vi, (3.9)
- oY
o =0+ (3.10)

can also satisfy eqs.(3.6),(3.8) with an arbitrary v, ¢ and A’ are not uniquely determined.
When the medium is uniform and isotropic, B and D are expressed by

D =¢cE, B =uH.
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€ and p are called dielectric constant and permeability respectively. The value of ¢y and pg in
vacuum are

107
€g=-—5 C?-s?/kg-m>® = 8.854 x 10712 F/m
4mc?

po = 47 x 107" kg - m/C? = 1.257 x 1075 H/m

1 2

=c
€oMo

where c is the light speed in vacuum (C is Coulomb). Plasmas in magnetic field are anisotropic
and € and p are generally in tensor form. In vacuum, egs (3.2),(3.3) may be reduced to

1 _0¢ 10%°A :
0A 1

As ¢ and A have arbitrariness of 1 as shown in egs.(3.9),(3.10), we impose the supplementary
condition (Lorentz condition)

V-A+-—=0. (3.13)

Then eqgs.(3.11),(3.12) are reduced to the wave equations
s, 10% 1

T 292 _5_0[)’ (3.14)
1 0%A .

In derivation of (3.15), a vector relation
Vx(Vxa)-V(V-a)=-Va

is used, which is valid only in (z,y, z) coordinates. The propagation velocity of electromagnetic

field is 1/(po€0)/? = ¢ in vacuum.
When the fields do not change in time, the field equations reduce to

E:—v¢, BZVXA,

2 1 2 . .

Vio=——p VPA=-—uj, V-A=0, V.j=0.
0

The scalar and vector potentials ¢ and A at an observation point P (given by the position vector
r) are expressed in terms of the charge and current densities at the point Q (given by ') by
(see fig.3.1)

or) = o [ 2 ar (3.16)

A(r) = Z—;/j(;)dr’ (3.17)

where R=7r — 7', R=|R| and dr’ = d2’d’dz’. Accordingly E and B are expressed by
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Fig.3.2 Magnetic surface 1) = const., the normal Vi and line of magnetic force.

1 R
/ ﬁpdr', (3.18)

N dmeg

% R
B=H [1X

/
=0 | Tprodr (3.19)

When the current distribution is given by a current I flowing in closed loops C, magnetic
intensity is described by Biot-Savart equation

B I sSXmn

- __ =" 2
o ml R ds (3.20)

where s and n are the unit vectors in the directions of ds and R, respectively.

3.2 Magnetic Surface
A magnetic line of force satisfies the equations

e _dy d

_ 3.21
B. B, B, B (3.21)

where [ is the length along a magnetic line of force (dI)? = (dz)? + (dy)? + (dz)2. The magnetic
surface (1) = const. is such that all magnetic lines of force lie upon on that surface which
satisfies the condition

(Vi(r)) - B=0. (3.22)

The vector Vi (r) is normal to the magnetic surface and must be orthogonal to B (see fig.3.2).
In terms of cylindrical coordinates (7,0, z) the magnetic field B is given by

C10A. 94 04, 0A, 10 104,
B=va o P e BT raM g

(3.23)

In the case of azi-symmetric configuration (0/06 = 0),
W(r,z) =rAp(r, z) (3.24)

satisfies the condition (3.22) of magnetic surface; B,0(rAy)/0r+By -0+ B,0(rAy)/0z = 0.
The magnetic surface in the case of translational symmetry (0/0z = 0) is given by

W(r,0) = A,(r,0) (3.25)
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and the magnetic surface in the case of helical symmetry, in which v is the function of r and
0 — az only, is given by

W(r,0 —az) = A, (r,0 — az) + arAy(r,0 — az) (3.26)
where « is helical pitch parameter.

3.3 Equation of Motion of a Charged Particle

The equation of motion of a particle with the mass m and the charge ¢ in an electromagnetic
field E, B is

d?r dr
—=F = F+—xB). 3.27
a2 q( AT ) (3.27)

Since Lorentz force of the second term in the right-hand side of eq.(3.27) is orthogonal to the
velocity v, the scalar product of Lorentz force and v is zero. The kinetic energy is given by

2 2 t

muv muvg
— = FE - vdt.
2 o 1),

When the electric field is zero, the kinetic energy of charged particle is conserved. The z
component of eq.(3.27) in the orthogonal coordinates (x,y, z) is written by md?z/dt? = ¢(E, +
(dy/dt)B,—(dz/dt)B,), However the radial component of eq.(3.27) in the cylindrical coordinates
(r,0,2) is md?r/dt? # q(E, + r(df/dt) B, — (dz/dt)By). This indicates that form of eq.(3.27) is
not conserved by the coordinates transformation. When generalized coordinates ¢; (i = 1,2, 3)
are used, it is necessary to utilize the Lagrangian formulation. Lagrangian of a charged particle
in the field with scalar and vector potentials ¢, A is given by

2

. muv
L(gi,dist) = =~ +qv- A —q¢. (3.28)

Lagrangians in the orthogonal and cylindrical coordinates are given by

Liz,y, 2,5, 2,8) = 5 (& + 57 +2) + qld A, + 94, + 24.) - 9,

L(r,0,z,7,0,%t) = %(7’“2 + (7“0')2 + %) + q(rA, + rAy + ZA,) — q¢
respectively. The equation of motion in Lagrangian formulation is

d /0L oL
— (=)= =0. .2
dt (a(ji> ol 0 (3.29)

The substitution of (3.28) into (3.29) in the case of the orthogonal coordinates yields

d, . DA 0p\

it +adi) —a (v G2 = 50 =o.

i — (_3Aw_(d_xi+%ﬁ+%2)A U.%_@>
— I\ dt 0x | dtoy  dtaz) " dr Oz

=q(E + v x B),,

and this equation is equivalent to eq.(3.27). Lagrangian equation of motion with respect to the

cylindrical coordinates is mi = ¢(E + v x B), + m(r0)?/r and the term of centrifugal force
appears.
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Canonical transformation is more general than the coordinates transformation. Hamiltonian
equation of motion is conserved with respect to canonical transformation. In this formulation
we introduce momentum coordinates (p;), in addition to the space coordinates (g¢;), defined by

pi= o (3.30)

qi

and treat p; as independent variables. Then we can express ¢; as a function of (g;,p;,t) from
eq.(3.30) as follows:

¢ = Gi(gj,pj, 1) (3.31)
The Hamiltonian H (g;,p;,t) is given by
H(qi,pist) = —L(qi,4i(g5, 05, 1), 1) + > pidi(q5, ps» t).- (3.32)
i

The xz component of momentum p, in the orthogonal coordinates and 6 component py in the
cylindrical coordinates are written as examples as follows:

Pz = mr + qAaca T = (pac - qA:v)/ma

po = mr20 + qrAy, 0 = (pp — qrAg)/(mr?).
Hamiltonian in the orthogonal coordinates is

1

H =5~ ((pe=0Ae)*+ 0y =04+ (p:=4A2)°) + ad(2,9,2,1),

and Hamiltonian in the cylindrical coordinates is

r2

1 —arAn)?
H:% <(pT_qAr)2—|—M+(pz_qu)2> + qd)(?“,Q,z,t).

The variation of Lagrangian L is given by

oL . . . . .
6L = Z ( -0q; + q‘6Qi> = (pidq; + pidd;) = 6 (Zpi%) +> (pidg; — 4iops)
and
—L+> pigi) = Y _(4i0pi — pidai),  0H(qs,pit) = (Gs0pi — pidas).
Accordingly Hamiltonian equation of motion is reduced to

dg; OH dp; ~ OH
i e vt (333)

Equation (3.33) in the orthogonal coordinates is
dr _po—qds dpe g 04
dt m  dt  mozx

(o 04) 2 (2o

o
(p—qA) - 950

e T e T

=q(E+vx B);

and it was shown that eq.(3.33) is equivalent to eq.(3.27).
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/
{
\
/\

P(r*, 2*) = const.

Fig.3.3 Magnetic surface (dotted line) and particle orbit (solid line).

When H does not depend on ¢ explicitly (when ¢ , A do not depend on t),

AH(5p) _ 5~ (6}1@ 8H%>
dt 8qi dt 3}91‘ dt

’
%

H(q;,pi) = const. (3.34)

is one integral of Hamiltonian equations. This integral expresses the conservation of energy.
When the electromagnetic field is axially symmetric, pg is constant due to 0H/06 = 0 as is
seen in eq.(3.33) and

po = mr20 4 qrAg = const. (3.35)

This indicates conservation of the angular momentum. In the case of translational symmetry
(0/0z = 0), we have

p, = mz + qA, = const. (3.36)

3.4 Particle Orbit in Axially Symmetric System

The coordinates (*, 0%, z*) on a magnetic surface of an axially symmetric field satisfy
v =r"Ay(r*,z") = ey

On the other hand the coordinates (7,6, z) of a particle orbit are given by the conservation of
the angular momentum (3.35) as follows;

rAg(r,z) + 24 = 29 — const..
q q

If ¢)p is chosen to be en = pg/q, the relation between the magnetic surface and the particle orbit
is reduced to

rAg(r,z) —r*Ag(r*, 2") = Mg
q

The distance § (fig.3.3) between the magnetic surface and the orbit is given by
d=(r—r"e, + (z —2")e,,
8- V(rdg) = —p2,
q
From the relations rB, = —0(rAp)/0z, rB, = 0(rAy)/0r, we find

[—(z — 2)B. + (r —*)B.] = —%ré.



3.5 Drift of Guiding Center in Toroidal Field 27

Fig.3.4 The dotted lines are lines of magnetic force and the solid lines are particle orbit in cusp field.

This expression in the left-hand side is the § component of the vector product of B, = (B,,0, B)
and § = (r —7*,0,z — z%). Then this is reduced to

(B, x 8)g = ——r6.
q

Denote the magnitude of poloidal component B}, (component within (rz) plane) of B by B,,.
Then we find the relation —B,d = —(m/q)vg (vp = rf) and

7'mv97

0= — = pap-
4By P

This value is equal to the Larmor radius corresponding to the magnetic field B, and the tan-
gential velocity vg. If ey is chosen to be enp = (pg — m(rvg))/q ((rvg) is the average of ruvg), we
find

5g="1 (v9 - @) . (3.37)

4By

Let us consider a cusp field as a simple example of axi-symmetric system. Cusp field is given
by

A, =0, Ay = arz, A, =0, (3.38)
By =—ar, By=0, B, =2az. (3.39)

From eq.(3.34) of energy conservation and eq.(3.35) of angular momentum conservation, we
find

y _ Pe
mrf = — — qazr,
r

m,. . (po — qar?z)? m
E(TQ )+ 2mpr? =Wi= Ev% '

These equations correspond to the motion of particle in a potential of X = (pg—qar?z)?/(2mr?).
When the electric field is zero, the kinetic energy of the particle is conserved, the region con-
taining orbits of the particle with the energy of mwv3 /2 is limited by (see fig.3.4)

1 2 2
X:_<@_qam> < %
r 2
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Fig.3.5 Toroidal drift.

3.5 Drift of Guiding Center in Toroidal Field

Let us consider the drift of guiding center of a charged particle in a simple toroidal field
(Br =0, B, = BoRy/R, B, = 0) in terms of cylindrical coordinates (R, ¢, z). The ¢ component
B, is called toroidal field and B, decreases in the form of 1/R outward. The magnetic lines of
force are circles around z axis. The z axis is called the major axis of the torus. As was described
in sec.2.4, the drift velocity of the guiding center is given by

ve =) e +L 212+ﬁ e
G = Y€y qu,R I 2 z

Particles in this simple torus run fast in the toroidal direction and drift slowly in the z direction
with the velocity of

2
m 2 U1 49’
= L) o (P2, 3.40
o qBoRo<”"+2> (Ro>” (3.40)

This drift is called toroidal drift. Ions and electrons drift in opposite direction along z axis. As
a consequence of the resultant charge separation, an electric field E is induced and both ions
and electrons drift outward by E x B/B? drift. Consequently, a simple toroidal field cannot
confine a plasma (fig.3.5), unless the separated charges are cancelled or short-circuited by an
appropriate method. If lines of magnetic force connect the upper and lower regions as is shown
in fig.3.6, the separated charges can be short-circuited, as the charged particles can move freely
along the lines of force. If a current is induced in a toroidal plasma, the component of magnetic
field around the magnetic azis (which is also called minor azis) is introduced as is shown in
fig.3.6. This component By, is called poloidal magnetic field. The radius R of the magnetic axis
is called magjor radius of torus and the radius a of the plasma cross section is called minor radius.
Denote the radial coordinate in plasma cross section by r. When a line of magnetic force circles
the major axis of torus and come back to cross the plane P, the cross point rotates around the
minor axis O by an angle ¢ in P, there is following relation:

re By
2rR B,
The angle ¢ is called rotational transform angle and is given by

L R B,
—_— = — 3.41
2 r B, ( )

A= R/a is called aspect ratio.

3.5a Guiding Center of Circulating Particles
When a particle circulates torus with the velocity of v, it takes T' = 27 Ry / v||. Accordingly
the particle rotates around the minor axis with angular velocity of

i_ LU”
T 27Rp
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Fig.3.6 The major axis A, the minor axis M of toroidal field and rotational transform angle ¢.

on electron

Fig.3.7 Orbits (solid lines) of guiding center of circulating ions and electrons and magnetic surfaces
(dotted lines).

and drifts in z direction with the velocity of vg,. Introducing x = R — Ry coordinate, the orbit
of the guiding center of the particle is given by

dx B dz B n
i wz, i wx + Vg-
The solution is

Udr 2 2 2
(:):—I——) + 2z =r-.
w

If a rotational transform angle is introduced, the orbit becomes a closed circle and the center of
orbit circle deviates from the center of magnetic surface by the amount of

Vdr muv| 2w vﬁ_
A= _ - _ 14+ £ 3.42
w qBo ¢ + 2vﬁ ’ (342)

27
A ~ pa (—)

where pq is Larmor radius. As is seen in fig.3.7, the sign of the deviation is A < 0 for the case
of v >0, ¢ > 0 (ion) since vq; > 0, w > 0 and the sign becomes A > 0 for the case of v <0

(opposit to v > 0) ¢ > 0 (ion).

3.5b Guiding Center of Banana Particles
In the case of |B,| > |Bp|, the magnitude of toroidal field is nearly equal to B, and

BoRy By

”
B = ~By|l—— .
R 1+ (r/R)cosf 0( Ry COSH)
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3 N

Fig.3.8 (r,0) coordinates

By

[

-

Fig.3.9 Banana orbit of ion

Denote the length along magnetic line of force by [, and denote the projection of a location on
the magnetic line of force to (R, z) plane by the coordinates (r,6) as is shown in fig.3.8. Since
the following relations

rd B, Il B
l BO’ T BO &

If v (parallel component to magnetic field) is much smaller than v; component and satisfies
the condition;

oy Uﬁ<r (3.43)
v2 R’ v2 " R '

the particle is trapped outside in the weak region of magnetic field due to the mirror effect as

is described in sec.2.5 (The mirror ratio is (1/R)/(1/(R + r))). This particle is called trapped

particle. Circulating particle without trapped is called untrapped particles. Since vﬁ < vﬁ_ for

the trapped particle, the r component of the toroidal drift vy, of trapped particle is given by
vl

m
z = T 1 0 _ — 1 0'
7 = vqr SIn B0 2 sin

The parallel motion of the guiding center is given by (see sec.2.4)

doj _ pm OB
dt  m o’
2
o) = —%%HBO sin kl = _;}_EFE) sin 6.

The solution is d . m .
—|r+ —v | =
dt qB, I ’
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m
r—1r9)=———"" 3.44
qu | ( )

Here r = rg indicates the radial coordinate of turning point by mirror effect. Since the orbit is
of banana shape, the trapped particle is also called banana particle (see fig.3.9). The width of
banana Ay, is given by

m mu ,UH BO BO <r>1/2 <R>1/2 (2,“_)
b By v B, T By \R) T\ L) (3.45)

3.6 Orbit of Guiding Center and Magnetic Surface

The velocity of guiding center was derived in sec.2.4 as follows:

’m’U2
(bx VB) + E!(b % (b-V)B) (3.46)

mv? /2
qB>

1
(e} :Unb—i— E(E X b) +

and
L = mv? /(2B) = const.

When the electric field E is static and is expressed by E = —V ¢, the conservation of energy
m
E(Uﬁ +v} )+ qgp=W

holds. Then v is expressed by

2) 1/2 1/
v ==+ p— (W —q¢p — umB)*7~. (3.47)
Noting that v|| is a function of the coodinates, we can write

V x (mv”b) = m’UHV x b+ V(m’UH) x b

1
=muV x b+ v—(—quf) — umVDB) xb
I

and
2 2
Y| _ ™y 1 mut /2
Then eq.(3.46) for vg is reduced to
Y| mY| i
UGZ’U”b+ q—BVX(mU”b>— qBVXb + 2(b)((b V)B)
— b+ Ly b~ ™ Vxb-bx(b-V)b
—'UH +q_B X(mU” >_q—B( X — X( . ) )

As the relation V(b-b) = 2(b-V)b+2bx (V xb) =0 ((b-b) = 1) holds (see appendix
Mathematical Formula), the third term in right-hand side of the equation for vg becomes
( )=(Vxb)—(Vxb)L=(Vxb)=(b-(Vxb))b. Since Vx B=BVxb+VBxb=pj,
we have b-V x b = pgj)|/B. The ratio of the third term to the first one, which are both parallel
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Fig.3.10 Coordinate system for explanation of Ware’s pinch.

to the magnetic field, is usually small. If the third term can be neglected, eq.(3.46) for vg is
reduced to

drg

= Uy (A + mB) . (3.48)
& B

qB

The orbit of guiding center is equal to the field line of magnetic field B* = V x A* with the
vector potential

A=A+ g
- BB

By reason analogous to that in sec.3.2, the orbit surface of drift motion of guiding center is given
by

rAg(r,z) = const. (3.49)

in the case of axi-symmetric configuration.

3.7 Effect of Longitudinal Electric Field on Banana Orbit

In the tokamak configuration, a toroidal electric field is applied in order to induce the plasma
current. The guiding center of a particle drifts by E x B/B2, but the banana center moves in
different way. The toroidal electric field can be described by

0A
EB,=-2C¢
v ot
in (R, p, z) coordinates. Since angular momentum is conserved, we can write
R(mR¢ + qA,) = const.

Taking the average of foregoing equation over a Larmor period, and using the relation

. B
(Rp) = ﬁvu
we find
B,
R mo)| - +qA, | = const. (3.50)

For particles in banana motion (v| < vy ), v becomes 0 at the turning points of the banana
orbit. The displacement of a turning point (R, Z) per period At is obtained from

0 0
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where 7 is the radial coordinate of the magnetic surface. The differentiations of RA, = const.
with respect to ¢ and 6 are zero, since RA, = const. is the magnetic surface. By means of the
relation

19 | (ORO(RA,) 07 0(RA ))
- A I Wi Y il ®»
R o 4%) R(ar Y
= cosByz —sin0Br = B,

we obtaine the drift velocity

Ar By

ar_ Lo 51
At~ B, (3:51)

When the sign of B}, produced by the current induced by the electric field £, is taken account
(see fig.3.10), the sign of Ar/At is negative and the banana center moves inward. Since |B,| <

|B,| ~ B, the drift velocity of banana center is (B/B,)? times as fast as the the drift velocity
E B,/ B? of guiding center of particle. This phenomena is called Ware’s pinch.
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Ch.4 Velocity Space Distribution Function and
Boltzmann’s Equation

A plasma consists of many ions and electrons, but the individual behavior of each particle can
hardly be observed. What can be observed instead are statistical averages. In order to describe
the properties of a plasma, it is necessary to define a distribution function that indicates particle
number density in the phase space whose ordinates are the particle positions and velocities. The
distribution function is not necessarily stationary with respect to time. In sec.4.1, the equa-
tion governing the distribution function f(g;,p;,t) is derived by means of Liouville’s theorem.
Boltzmann’s equation for the distribution function f(x,v,t) is formulated in sec.4.2. When the
collision term is neglected, Boltzmann’s equation is called Vlasov’s equation.

4.1 Phase Space and Distribution Function

A particle can be specified by its coordinates (x,y, z), velocity (vg,vy,v.), and time ¢t. More
generally, the particle can be specified by canonical variables q1, g2, q3,p1,p2,p3 and t in phase
space. When canonical variables are used, an infinitesimal volume in phase space
A = §q10920q30p10p20ps is conserved (Liouville’s theorem). The motion of a particle in phase
space is described by Hamilton’s equations

dg; _ OH(gj,pj:t) dpi 9H (g;,pj»t)

=2 4.1
dt 8pl' ’ dt 8ql- ( )
The variation over time of A is given by

dA . d(éql) d((spl)

T ( = op1 + & 5Q1> 0q20p20q30ps + - - -,

d OH 0*H

og =6 (%) = b

a’? <8pi> opig;

d OH 0’H

Sopi =6 (o) =~ —p,

di*” (6%’) Dqidp; "

dA 0’H 0’H

R — A=0. 4.2

i <8pz-aqz- 8qi8pi> (42)
Let the number of particles in a small volume of phase space be §N

ON = F(gi,pi,t)0qop (4.3)

where dq = 0q10g20q3, dp = dp10p2dps, and F'(g;, ps, t) is the distribution function in phase space.
If the particles move according to the equation of motion and are not scattered by collisions, the
small volume in phase space is conserved. As the particle number N within the small phase
space is conserved, the distribution function (F' = dN/A) is also constant, i.e.,

dF  OF L /0Fdq;  OF dp; OF S /0HOF OHOF
_ Z<——q+ £>_ Z( 9r >:o. (4.4)

E N E 8qi dt 3}91‘ dt N E api 8qi B 3qi 3}91‘

i=1 i=1

In the foregoing discussion we did not take collisions into account. If we denote the variation of
F due to the collisions by (0F'/dt)con, eq.(4.4) becomes

OF S /0HOF OHOF SF
ot + Z <8pz' g Oy api) N <ﬁ>coll' (4:5)

i=1
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¢ Sp

dq Op

Fig.4.1 Movement of particles in phase space.

4.2 Boltzmann’s Equation and Vlasov’s Equation

Let us use the space and velocity-space coordinates x1, x2, T3, v1, V9, v3 instead of the canonical
coordinates. The Hamiltonian is

_ 1 2
H=o—(p—qA)" +q9, (4.6)
pi = mv; + qA;, (4.7)
qi = Ti (4.8)
and

TR Vi, (4.9)
dp; oH (o — qAr) 0A 09

A — — . 4.1
de Ox; zk: m ow; ‘o (4.10)

Consequently eq.(4.5) becomes

OF . OF S (3. 04, 09\ OF  [OF
LY v+ g3 (Y _ (=) . 4.11
ar = Ky = <k:1 0w~ 0 ) opy < ot )coll (1

By use of eqs.(4.7) (4.8), independent variables are transformed from (g;, p;, t) to (z;,v;,t) and

6’Uj(xk7pk7t) 1

Op; - Eéij’
uy(wpit) g 94

ox; m Ox;’
6’Uj(xk7pk7t) — _2%

ot m Ot

We denote F(z;,p;,t) = F(x,pi(zj,v5,t),t) = f(zj,v5,t)/m3. Then we have m3F(z;,p;,t) =
f(xj,vj(zs,pist), t) and

8f87)]_8_fi

0 0
apiF(xhaplwt) - @f(xjavj(xhaphat)ut) - zj: 8—7)]8])1 - avi m’

m3
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5 5 af of du;
3 0 _ Y o
m axkF(l‘h,ph,t) 8 f(xnvz(xhuph7 )7 ) z + Z 8UZ 8CUI§
0A;
&'xk Z ov; ( ) 3%
L0 9 0A;
at (xhnphut) - atf(x’hvi(ajhuph? ) Z 8'1)@ (m > ot

Accordingly eq.(4.11) is reduced to
of of —_q> 0A; 8f <—_q> 0A;
t+zi:8vi<m ot +z/€: Z@vz m ) Oxy,
0A, 99\ q Of _ (6f>
+Z <Z Y s o ) =5t )y

m Ov;
Py ge)adt (o)
vk Oz Oz 0t / coll '

m ov;

T Tual ey (-5

Since the followmg relation is hold

8Ak Z ki—i_(UX(VXA))Z_Zngj; +('v><B)i.
k
we have
af of _(dof
+Z < B)i ov; <E>coll' (#12)

This equation is called Boltzmann’s equatwn. The electric charge density p and the electric
current j are expressed by

p= ZQ/fdvldUQdU?n (4.13)
i,e
i =Y a [ vfdviduadus. (4.14)

Accordingly Maxwell equations are given by

V-E:%Zq/fdv, (4.15)

M—V x B = eo— + Zq/vfdv, (4.16)
0
0B
E=— 4.17
V-B=0. (4.18)

When the plasma is rarefied, the collision term (0f/dt).on may be neglected. However, the
interactions of the charged particles are still included through the internal electric and magnetic
field which are calculated from the charge and current densities by means of Maxwell equations.
The charge and current densities are expressed by the distribution functions for the electron and
the ion. This equation is called collisionless Boltzmann’s equation or Viasov’s equation.

When Fokker-Planck collision term! is adopted as the collision term of Boltzmann’s equation,
this equation is called Fokker-Planck equation (see sec.16.8).
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Ch.5 Plasma as MHD Fluid

5.1 Magnetohydrodynamic Equations for Two Fluids

Plasmas can be described as magnetohydrodynamic two fluids of ions and electrons with mass
densities pmi, pme, charge density p, current density 7, flow velocities Vi, Ve, and pressures p,
Pe- These physical quantities can be expressed by appropriate averages in velocity space by
use of the velocity space distribution functions f;(r,v,t) of ions and electrons, which were
introduced in ch.4. The number density of ion n;, the ion mass density pn i, and the ion flow
velocity Vi(r,t) are expressed as follows:

ni(r,t) :/fi(r,v,t)dv, (5.1)

pmi(r,t) = mini(r,t), (5.2)
~ Jufilr,vt)de 1 (v Do
V&J)_‘LanJMU__me)/vﬁ(,,ﬂd. (5.3)

We have the same expressions for electrons as those of ions. Since magnetohydrodynamics
will treat average quantities in the velocity space, phenomena associated with the shape of the
velocity space distribution function (ch.11) will be neglected. However the independent variables
are 7, t only and it is possible to analyze geometrically complicated configurations.

Equations of magnetohydrodynamics are followings:

One
: eVel =Y, 4
Y (1Y) = 0 (5.4)
on;
LV (Vi) =0, (5.5)
dV,
NeMMe=g— = —Vpe —eno(E+V.x B)+ R, (5.6)
dVv;
nims; T =—-Vpi + Zeni(E +V; x B) — R. (5.7)

Here R denotes the rate of momentum (density) change of the electron fluid by the collision with
the ion fluid. The rate of momentum change of the ion fluid due to the collision with electron
fluid is —R. The change of the number n(x,y, z,t) Az AyAz of particles within the region of
Az AyAz is the difference between the incident particle flux n(z,y, z,t)V,(z,y, z,t) AyAz into
the surface A in fig.5.1 and outgoing particle flux n(z + Az, y, z,t)V,(x + Az, y, z,t) Ay Az from
the surface A’ that is,

(n(z,y, 2, ) Ve (2,9, 2,t) — n(x + Az, y, 2, 1) Vo (z + Az, y, 2,1)) Ay Az

=— MAxAyAz.
Ox

When the particle fluxes of the other surfaces are taken into accout, we find (5.4), that is

@Aa:AyAz =— <

o(nVy)  0(nV,) I(nV,)
5 + ¥+

ox dy 0z

> AxAyAz.
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n(z,t)V,(z,1)

Fig.5.1 Particle flux and force due to pressure

The term —Vp in eqs.(5.6),(5.7) is the force per unit volume of plasma due to the pressure
p by the following reason. The force applied to the surface A in fig.5.1 is p(x,y, z,t) Ay Az and
the force on the surface A’ is —p(z + Az, y, z,t) AyAz. Therefore the sum of these two forces is

(—p(.’E + Aw?@/?'Z:t) +p(x7yazat))AyAz - _g_A$AyAZ

in the x direction. When the effects of the pressure on the other surfaces are taken account, the
resultant force due to the pressure per unit volume is

Oy 00y
<a Bt gc) =V

where &, 9, 2 are the unit vector in x, y, z directions respectively. The second term in right-hand
side of eqs.(5.6),(5.7) is Lorentz force per unit volume. The third term is the collision term of
electron-ion collision as is mentioned in sec.2.8 and is given by

R=-nme(Ve—Vi)ve (5.8)

where v,; is coulomb collision frequency of electron with ion.

Let us consider the total time differential in the left-hand side of equation of motion. The
flow velocity V is a function of space coordinates r and time ¢. Then the acceleration of a small
volume of fluid is given by

Wiry _oving | (i_: - v) virn = Y0 e wvien,

Therefore the equations of motion (5.6),(5.7) are reduced to

NeMe ( (Ve-V)V, ) =—Vpe—eno(E+V.xB)+R (5.9)
(89
nym;

Conservation of particle (5.4),(5.5), the equations of motion (5.9), (5.10) can be derived from
Boltzmann equation (4.12). Integration of Boltzmann equation over velocity space yields egs.(5.4),
(5.5). Integration of Boltzmann equation multiplied by mwv yields egs. (5.9),(5.10). The process
of the mathematical derivation is described in Appendix A.

(Vi- V)V, ) = —Vpi + Zens(E + Vi x B) — R. (5.10)

5.2 Magnetohydrodynamic Equations for One Fluid

Since the ion-to-electron mass ratio is mi/me = 1836A (A is atomic weight of the ion), the
contribution of ions to the mass density of plasma is dominant. In many cases it is more con-
venient to reorganize the equations of motion for two fluids to the equation of motion for one
fluid and Ohm’s law.

The total mass density of plasma pn, the flow velocity of plasma V', the electric charge
density p and the current density j are defined as follows:
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Pm = NeMe + Nymy, (5.11)

vV — NeMeV e + nimiVi’ (5.12)
Pm

p = —ene + Zen;, (5.13)

Jj=—-enVe+ Zen;iVi. (5.14)

From eqs.(5.4),(5.5), it follows that

0pm

(puV) = 0, 1
5 +V-(pmV)=0 (5.15)
ap .

=0 1
5 +V.-3=0 (5.16)

From eqgs.(5.9) (5.10), we find

Vv
me + neme(ve : V)Ve + nimi(vi ’ V)Vl

= ~V(pe +pi) + pE +j x B. (5.17)

The charge neutrality of the plasma allows us to write ne >~ Zn;. Denote An, = ne — Zn;, we
have

Me/

(Ve - Vi)7

1

m,
sznimi<1+—ez), p=pitp, V=Vi+

p=—eAn,, j=—eno(Ve—Vj).

Since me/m;i < 1, the second and third terms in left-hand side of eq.(5.17) can be written to be
(V-A)V. Since Vo, =V —j/en. 2~V — j/ene, eq.(5.9) reduces to

Loy, - B - me 05 medV (5.18)

ene ene  e2ng Ot e Ot

J

ene

E—i—(V— )xB—i—

By use of the expression of specific resistivity 7, (see sec.2.8) the collision term R is reduced to

Melei

R = n, ( ) (—ene) (Ve — Vi) = neeng. (5.19)

Nnee?

Equation (5.18) corresponds a generalized Ohm’s law. Finally the equation of motion for one
fluid model and a generalized Ohm’s law are give by

ov .
Pm (E‘F(VV)V) =—-Vp+pE+j x B, (5.20)
J 1 . Me 0 me OV
E V- — B+ —Vp.—nj = - - ——~0.
+ ( ene> b ene Pe =113 e2n, Ot e Ot
(/] < 1) (5.21)
The equation of continuity and Maxwell equations are
9pm
P 4 V- (puV) =0, (5.22)

ot
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%juv'j:o, (5.23)
VxE_—aa—I:, (5.24)
iv xB=j+ %—lt), (5.25)
V-D =p, (5.26)
V.-B=0. (5.27)

From eqs.(5.25),(5.24), it follows V x V x E = —g0j /0t — poegd* E/Ot?. A typical propagation
velocity of magnetohydrodynamic wave or perturbation is Alfven velocity va = B/(popm)"/?
as is described in sec.5.4 and is much smaller than light speed ¢ and w?/k* ~ v] < ¢?. Since
|V x (0B/0t)| = |V x V x E| ~ k?|E|, and poeo|0?E/0t?| ~ w?|E|/c?, the displacement current,
0D /0t in (5.25) is negligible. Since the ratio of the first term (me/e)0d7 /0t in right-hand side
of eq.(5.21) to the term (j x B) in left-hand side is w/{2, the first term can be neglected, if
|w/f2| < 1. The second term (me/e)OV /0Ot in the right-hand side of eq.(5.21) is of the order of
w/ (2 times as large as the term V' x B in the left-hand side. Therefore we may set the right-

hand side of eq.(5.21) nearly zero. When the term j x B is eliminated by the use of eq.(5.20),
we find

Aneg m; dV
E+———1!
Ne + e dt

1
E+V xB—-—Vp—nj=
en

The ratio of (m;/e)dV /dt to V x B is around |w/ 2], and Ane/ne < 1. When |w/2| < 1, we
find

1
E—I-VXB—%Vpi:nj. (|w/$2] < 1) (5.28)

5.3 Simplified Magnetohydrodynamic Equations

When |w/$2| < 1, |w/k| < ¢, and the ion pressure term Vp; can be neglected in Ohm’s law,
magnetohydrodynamic equations are simplified as follows:

E+V x B =nj, (5.29)

Pm (88—‘; + (V- V)V> =-Vp+3jxB, (5.30)

V x B = uj, (5.31)
OB

V-B=0, (5.33)

0pm

— +(V-V)pu +puaV-V =0. (5.34)

ot
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We may add the adiabatic equation as an equation of state;

d
-7y _ 0

where the quantity ~ is the ratio of specific heats and v = (24 6)/6 (6 is the number of degrees
of freedom) is 5/3 in the three dimensional case 6 = 3. Combined with eq.(5.34), the adiabatic
equation becomes

0
8—1; H(V-V)p+pV -V =0. (5.35)
In stead of this relation, we may use the more simple relation of incompressibility

V.-V =0 (5.36)

if |(dp/dt)/p)| < |V -V|.  From egs.(5.31),(5.32), the energy conservation law is given by

1 a9 ( B?
V- (ExB)+—|—|+E-j=0. 5.37
| ) 6t<2u0> J (5.37)

From eq.(5.29), the third term in the right-hand side of eq.(5.37) becomes
E-j=n>+(xB)-V. (5.38)
By use of eqs.(5.30),(5.34), Lorentz term in eq.(5.38) is expressed by

. 0 pmV?
(JXB)'V—E( 2

From eq.(5.35), it follows that

pmV?

)+ V- (

V)+V.Vp.

0
—V(pV):a—};Jr(v—l)pV'V

and

0 ( p P
Vw2 () v (L)

Therefore the energy conservation law (5.37) is reduced to

O (puV?:, p | B? P pmV2 p
(Ex H)+ = Y : — =0. (5.
V- (E x )+8t< 5 +7_1+2M0 +nj+V 5 +7_1+p V =0. (5.39)

The substitution of (5.29) into (5.32) yields

B
%ZVX(VxB)—anj:vX(VxB)+MﬁAB (5.40)
0
OB
. :—(V-V)B—B(V~V)+(B-V)V+£AB. (5.41)
0

Here we used vector formula for V x (V' x B) (see appendix) and V x (V x B) = —AB (valid
only in the case of orthogonal coordinates). The quantity 7/uo = v, is called magnetic viscosity.
The substitution of (5.31) into (5.30) yields

dv B? 1
nr = v (pr 2+ LB VB 5.42
gy (p 2#0) o (B-V) (5.42)
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The equation of motion (5.42) and the equation of magnetic diffusion (5.41) are fundamental
equations of magnetohydrodynamics. Equation (5.33) V - B = 0, equation of continuity (5.34)
and equation of state (5.35) or (5.36) are additional equations.

The ratio of the first term to the second term of the right-hand side in eq.(5.40), Ry, defined
by

Vx(VxB) _ VB/L VL
IAB(n/po)l — (B/L¥(n/mo) 1

is called magnetic Reynolds number. The notation L is a typical plasma size. Magnetic Reynolds
number is equal to the ratio of magnetic diffusion time TR = poL?/n to Alfven transit time
mH = L/va (it is assumed that v ~ wvp), that is, Ry, = 7r/mu. When R, < 1, the magnetic
field in a plasma changes according to diffusion equation. When R, > 1, it can be shown that
the lines of magnetic force are frozen in the plasma. Let the magnetic flux within the surface
element AS be A®, and take the z axis in the B direction. Then A® is

R (5.43)

AP = B -nAS = BAzAy.
As the boundary of AS moves, the rate of change of AS' is

d d v,
E(Ax) = E(w + Az —z) = V(v + Azx) — Vy(z) = o Az,

d oV, oV,
—(AS) = L+ Y AzAy.
dt( 5) <8x 8y> Ty

The rate of change of the flux A® is

4, dB d, . (dB o
(a0) = U as+ BL(as) = ( DL B(V-V)-(B V)V)ZAS_ LABAS). (344

(see eq.(5.41)). When R, — oo, n — 0, the rate of change of the flux becomes zero, i.e.,
d(A®)/dt — 0. This means the magnetic flux is frozen in the plasma.

5.4 Magnetoacoustic Wave

As usual, we indicate zeroth-order quantities (in equilibrium state) by a subscript 0 and 1st-
order perturbation terms by a subscript 1, that is, py, = pmo+pm1, p = po+p1, V=0+V, B =
Bg + Bi. The case of n = 0 will be considered here. Then we find the 1st-order equations as
follows:

9pm
ot
ov . .
PmOE‘FVpl =Jo X B1+J;1 x By, (5.46)
Ip1 B
¥ +(V-V)po +vpoV -V =0, (5.47)
B
% =V x (V x By). (5.48)

If displacement of the plasma from the equilibrium position r( is denoted by &(rg,t), it follows
that

&(ro,t) =7r — 1o,

_dg o
V=Ta s (5.49)
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The substitution of (5.49) into eqgs.(5.48),(5.45),(5.47) yields

=V x (¢ x By), (5.50)
poj, =V x By, (5.51)
pm1 = —V - (pmo§), (5.52)
p1=—&-Vpy—poV - &. (5.53)

Then equation (5.46) is reduced to

0%¢

pmo g = V(& Vom0V - &) + - ~(V x By) x By + — m L (v x By) x By, (5.54)

Let us consider the case where By = const. pg = const., and the displacement is expressed by
&(r,t) = & expi(k-r — wt), then eq.(5.54) is reduced to

P, = —po(k - €1k — iy (k x (k x (&, x Bo))) x Bo. (5.55)
Using the vector formula a x (b x ¢) =b(a-¢) — c(a-b), we can write eq.(5.55) as
((k - Bo)® — 0w po ) &1 + (B3 + porpo)k — (k- Bo)Bo) (k- &) — (k- Bo)(Bo - &)k =

If the unit vectors of k, Bg are denoted by k= k/k, b= By/By, and the notations V = w/k,
v = BE/(opmo); B = po/(BE/210), cosd = (k - b) are introduced, we find

(cos? f — Z—;)&l + ((1 + ﬁ) — cos c9b> (k-&)—cosB(b- &)k =0. (5.56)

The scalar product of eq.(5.56) with k and b, and the vector product of k with eq.(5.56), yield

2
(14 2 = ) 0) = cost(b- ) =
2
W cos (k&) — oy (b)) =

VA

(cos? 6 — Z}/—Q) (k: x &)=
A

The solutions of these equations are magnetoacoustic wave. One solution is
V2 =03 cos? 0, (&, -k) =0, (&, - Bg) = 0. (5.57)

Since &, of this solution is orthogonal to k and By, this is called torsional Alfvén wave (see
sec.10.4). The other solutions are given by

<Z>4—(1+ﬁ) <1§;> +¥COS 0 =0, (5.58)

VA 2

Bo-(kx&)=0
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Since &; of these solutions are coplaner with k and By, these solutions are compressional mode.

If the velocity of sound is denoted by ¢ = vpo/pmo, eq.(5.58) becomes

s —

Vit (03 + )V + 02 cos®0 =0

and
1
VP =5 (o + )+ (0 + ) - 4R cos?0)'/?), (5.59)
1
V2 =5 (R + ) — (0 + ) — 4kl cos®0)'/?). (5.60)

The solution of eq.(5.59) is called compressional Alfvén wave (see sec.10.4) and the solution of
eq.(5.60) is called magnetoacoustic slow wave. Characteristic velocity

BZ
10 Pm0o

3 =

is called Alfvén velocity. The plasma with zero resistivity is frozen to the magnetic field. There
is tension B?/2p0 along the magnetic field line. As the plasma, of mass density py,, sticks to the
field lines, the magnetoacoustic waves can be considered as waves propagating along the strings
of magnetic field lines (see sec.10.4).
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Ch.6 Equilibrium

In order to maintain a hot plasma, we must confine and keep it away from the vacuum-
container wall. The most promising method for such confinement of a hot plasma is the use of
appropriate strong magnetic fields. An equilibrium condition must be satisfied for such magnetic
confinement systems.

6.1 Pressure Equilibrium

When a plasma is in the steady state, magnetohydrodynamic equation (5.30) yields the equi-
librium equation

Vp=jx B, (6.1)
and

V x B = upj, (6.2)

V-B=0, (6.3)

V-j=0. (6.4)

From the equilibrium equation (6.1), it follows that

B -Vp=0, (6.5)

j-Vp=0. (6.6)

Equation (6.5) indicates that B and Vp are orthogonal, and the surfaces of constant pressure
coincide with the magnetic surfaces. Equation (6.6) shows that the current-density vector j
is everywhere parallel to the constant-pressure surfaces. Substitution of eq.(6.2) into eq.(6.1)
yields

2
v<p+2%):(B.V)£:BQ<—%n+8BT@l>. (6.7)

The following vector relations were used here;
Bx (VxB)+(B-V)B=V(B?2), (B-V)B=DB?*b-V)b+b(b-V)B)/B].

R is the radius of curvature of the line of magnetic force and n is the unit vector directed toward
a point on the line of magnetic force from the center of curvature. [ is the length along the field
line. We find the right-hand side of eq.(6.7) can be neglected when the radius of curvature is
much larger than the length over which the magnitude p changes appreciably, i.e., the size of
the plasma, and the variation of B along the line of magnetic force is much smaller than the
variation of B in the perpendicular direction. Then eq.(6.7) becomes

LB B
PTo—~5
20 2p0

where By is the the value of the magnetic field at the plasma boundary (p=0).
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When the system is axially symmetric and 9/9z = 0, eq.(6.7) exactly reduces to

o) B2 + Bj B}

By the multiplification of eq.(6.8) by r? and the integration by parts we obtain
B? + B? 1 a B?
p+7z+ 0 =— p+ —= | 2mrdr
210 —y Ta”Jo 2p0

(B2) _ BZ(a) + Bj(a)
(p) + P Pa + TOG (6.9)

ie.,

( ) is the volume average. As B?/2yq is the pressure of the magnetic field, eq.(6.9) is the
equation of pressure equilibrium. The ratio of plasma pressure to the pressure of the external
magnetic field By

p _ n(Te +T})
b B2/2uy  BZ%/2
0/ 240 /210

(6.10)

is called the beta ratio. For a confined plasma, ( is always smaller than 1, and is used as a figure
of merit of the confining magnetic field. The fact that the internal magnetic field is smaller than
the external field indicates the diamagnetism of the plasma.

6.2 Equilibrium Equation for Axially Symmetric and Translationally Symmetric
Systems

Let us use cylindrical coordinates (r, ¢, z) and denote the magnetic surface by ¢. The magnetic
surface 1 in an axisymmetric system is given by (see (3.24))

Y =rAy(r,2) (6.11)

where (7, ¢, z) are cylindrical coordinates and the r and z components of the magnetic field are
given by

o %

B, = ——— B, = . .
r r o (6.12)

The relation B - Vp = 0 follows from the equilibrium equation and is expressed by

O dp | 00 dp _

9z Or ' Or 0z =0

Accordingly p is a functon of v only, i.e.,

p=p¥). (6.13)

Similarly, from 5 - Vp =0 and V x B = ppj , we may write

@8(7“399) n @ d(rBy,)

COr Oz 0z Or =0

This means that rB, is a function of 1) only and

"B, — H02—77(:/1). (6.14)
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z

Q—) ¢ Y=rA,

)
/ 1)

CoNY LN
N7 AN

Fig.6.1 Magnetic surfaces ) = rA, and I(v)

Equation (6.14) indicates that I(1)) means the current flowing in the poloidal direction through
the circular cross section within ¢ = rA, (fig.6.1). The r component of j x B = Vp leads to
the equation on % :

20p(v) | 1§ OI*(¥)

L(¢) =+ por W + 32 W =0 (6.15)
where
_ 0190 ?
LW*=Q§;§+5?>¢

This equation is called Grad-Shafranov equation. The current density is expressed in term of
the function of the magnetic surface as

. 7—_18[(1#) . 7L8[(1/1)

" omr 0z 2= onr or

. —1(010¢y 10% L(v)
o \Orr or  r 0z Hor

1 2
——(w%wﬂ%mj
o 8T
or

!

. /

J= %B +p'reg, (6.16)

L(¢) + MoTjgo =0.

The functions p(t)) and I%(y)) are arbitrary functions of 1. Let us assume that p and I? are
quadratic functions of . The value 9 at the plasma boundary can be chosen to be zero
(1s = 0) without loss of generality. When the values at the boundary are p = ps, I? = I? and
the values at the magnetic axis are 1) = g, p = po, 12 = I2, then p and I? are expressed by

2

p(¥) = ps + (po — ps)—g,

2 _ 72 2 2¢_2
I (w)_ls +(IO Is) 2
(45

The equilibrium equation (6.15) is then reduced to

L(y) + (ar® + B)¢p = 0,
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oy — 2ro(po = ps) g g (I = I3)
v dr? g

Since

(I° - 12)

v,

2
/v%(O‘TQJrﬁde—QMO/V(p—ps)dVJrﬂ/v

47?2 r

1 1 1
/ —PL(Y)dV = / —Vip - ndS — / — (Vip)?dV = —/ (B? + B3dV
vr ST vr 1%
eq.(6.15) of equilibrium equation is reduced to
)dV = L (B2, B2 (B2 + B?))dv.
(p_ps - %( pv go+ r z)) :
This is the equation of pressure balance under the assumption made on p(1) and ().

The magnetic surface v, the magnetic field B and the pressure p in translationally symmetric
system (0/0z = 0) are given by

Q;Z) :AZ(T,G),
_ 19y _ 9% _ Ho
Br=15g Bo=—5. B:=5 1)

p=p().

The equilibrium equation is reduced to

19 (9  10%  ap) o)
;5(%)*72@*“0 oy sz oy
1, ,
]—_IB+peZ7

27

It is possible to drive the similar equilibrium equation in the case of helically symmetric system.

6.3 Tokamak Equilibrium!

The equilibrium equation for an axially symmetric system is given by eq.(6.15). The 2nd and
3rd terms of the left-hand side of the equation are zero outside the plasma region. Let us use
toroidal coordinates (b,w,y) (fig.6.2). The relations between these to cylindrical coordinates

(r,p, z) are

Rysinhb Rysinw

z2=—.
coshb — cosw’ coshb — cosw

The curves b = by are circles of radius a = Ry sinh by, centered at r = Rgcothby, z = 0. The
curves w =const. are also circles. When the magnetic-surface function v is replaced by F,
according to

= F(b,w)
~ 21/2(coshb — cosw)1/2
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Fig.6.2 Toroidal coordinates.

the function F' satisfies

O*F OF O*F 1

outside the plasma region. When F' is expanded as
F = %g,(b) cos nw,

the coefficient g,, satisfies

d%gn dgn 1
In_ cothp™In — (nz——) gn = 0.

db? db

There are two independent solutions:

1 d 1 d
2 . 2 .
(n — Z) gn = sinh b&@n_l/g(COSh b), <’I’l — Z) fn = sinh b&Pn_l/Q(COSh b)

P,(z) and Q,(x) are Legendre functions. If the ratio of the plasma radius to the major radius

a/Ry is small, i.e., when €® > 1, then g, and f, are given by

1 2 2
go=¢€"2, g =—=eb2 fo= —eb/2(b +Ind—-2), f1= = e30/2,
2 7r 3T

If we take terms up to cosw, F' and v are
F = cogo +dofo +2(c1g91 + di f1) cosw,

F

_ b2 b
P = ST — i e 4(14+ e ’cosw)F.

Use the coordinates p,w’ shown in fig.6.3. These are related to the cylindrical and toroidal
coordinates as follows:

Rysinh b
coshb — cosw

. Ry sinw
r=Rg+ pcosw’ = 2z =psinw’ =

coshb — cosw’

When b is large, the relations are
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Ro

Fig.6.3 The coordinates r,z and p, w’

Accordingly the magnetic surface v is expressed by
2
T
2 4
+ [(co + —do(b+1n4 — 2)) e+ (—dleb — cle_bﬂ CoS w
s 3

d h
=d), (m% — 2) + (—0 (ln@ — 1) p+ - +h2p> Cosw.
p 2R 1% p

In terms of v, the magnetic-field components are given by

_ o _ o
rB, = P rB, = o
W oY
rB, = P rB, = 3

From the relation

—d—6 = TE A R—_MOIP
— w

p T 2mp

)

the parameter dj can be taken as dfj = pol,R/2m. Here I, is the total plasma current in the ¢
direction. The expression of the magnetic surface is reduced to

I I h
b = Ho pR(ln@—2> + <& <1n%_1>p+—1+h2p>cosw/ (6.17)
27 P 4dr p P

where Ry has been replaced by R. In the case of a/R < 1, the equation of pressure equilibrium
(6.9) is

(p) — pa = QLM«BM + (B2 + B2), - (B2)).

Here ( ) indicates the volume average and p, is the plasma pressure at the plasma boundary.
The value of B2 + B2 is equal to B2,. The ratio of (p) to (B2,)/2uy is called the poloidal beta
ratio 3,. When p, =0, 3, is

2 2
B2,

<Bgov - B<p> (618)

B, and B, are the toroidal magnetic fields in the plasma and the vacuum toroidal fields
respectively. When B, is smaller than B,,, the plasma is diamagnetic, 8, > 1. When B,, is
larger than By, the plasma is paramagnetic, 8, < 1. When the plasma current flows along
a line of magnetic force, the current produces the poloidal magnetic field B, and a poloidal
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Bo
Bov

Br<1

B >1

Fig.6.4 Diamagnetism (§, > 1) and paramagnetism (5, < 1)

Fig.6.5 Displacement of the plasma column.
Yo(p') = o(p) — Yy(p)Acosw, p' = p — Acosw.

component of the plasma current appears and induces an additional toroidal magnetic field.
This is the origin of the paramagnetism.
When the function (6.17) is used, the magnetic field is given by

10y —pol, (uofp SR 1 ( h1>) ,
B = —— = 1 RN — h [
Y rop 27tp * iR p + R\ 2 cosw

1 oy uoIp< SR ) 1 ( h1>) o,
B, = ——<2 = (B0l (1, 50 g 2y .
P rp Ow' (47TR " p +R 2+p2 S

The cross section of the magnetic surface is the form of

P(p,w') = o(p) + 11 cosw'.

When A = —1)1 /1), is much smaller than p, the cross section is a circle whose center is displaced
by an amount (see fig.6.5)

(6.19)

2

ol R(hl + hap?).
p

Let us consider the parameters h; and hs. As will be shown in sec.6.4, the poloidal component
B, of the magnetic field at the plasma surface (r = a) must be

B, (a,w") = B, (1 + %A cos w’) (6.20)
at equilibrium. a is the plasma radius and
l;
A:ﬁp+§—1 (6.21)

and (3, is the poloidal beta ratio

p

P = (B2 /2jm)

(6.22)
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Fig.6.6 Poloidal magnetic field due to the combined plasma current and vertical magnetic field.

and [; is
[ B2, pdpdu’

I =
' ma? B2

(6.23)

The parameters h; and hy must be chosen to satisfy B, = 0 and B,/ = B,(1+ (a/R)Acosw’)
at the plasma boundary, i.e.,

_ polp o 1) _ Mof< 8R _1)
h1_47ra<A+2, hy = =22 (In=— 4 A - (6.24)

Accordingly v is given by

I I 1 2
¢:'u02_PR<1 @—2> %(ln£+<1&+—) <1—a—2>>pcosw’. (6.25)
us p us a 2 P

The term hopcosw’ in 1 brings in the homogeneous vertical field

which is to say that we must impose a vertical external field. When we write ¢, = hap cosw’ so
that 1 is the sum of two terms, 1 = 1, + 1., e and 1, are expressed by

ot (1,3 1Y
e = = (l +A 5 | peosw (6.26)
polpR ( 8R > ,U/OIp < 8R > < 1> ,
=——(In— -2 In— —1 — (A . 2
Pp o . - . p+ ; + 5 ) | cosw (6.27)
These formulas show that a uniform magnetic field in the z direction,
,uof S8R 1)
B, = In—+A—= 2
Y7 xR < A3 (6.28)

must be applied in order to maintain a toroidal plasma in equilibrium (fig.6.6). This vertical
field weakens the inside poloidal field and strengthens the outside poloidal field.

The amount of B (eq.6.28) for the equilibrium can be derived more intuitively. The hoop
force by which the current ring of a plasma tends to expand is given by

8LI2

0L,
_ 1,00y
AR 2 g

F, =
LpIp,=const. 2 POR’

where L, is the self-inductance of the current ring:

S8R
Lp—uoR(ln7—|—§—2>.
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Fig.6.7 Equilibrium of forces acting on a toroidal plasma.

Accordingly, the hoop force is

_uoI§< SR I )
k= 5 lna+2 1).

The outward force F}, exerted by the plasma pressure is (fig.6.7)

F, = (p)ma®2r.

95

The inward (contractive) force Fp; due to the tension of the toroidal field inside the plasma is

B2
Fp1 = —MQWQQQ
240

and the outward force Fps by the pressure due to the external magnetic field is

The force Fj acting on the plasma due to the vertical field B, is
Fy =1,B,27R.

Balancing these forces gives

2 20 2p0

and the amount of B, necessary is

_NOIp S8R li 1)
B, =M% (2 Ly _ =
L= R <na+2 th=3)

where A = B, +1;/2 — 1. Eq.(6.9) is used for the derivation.

6.4 Poloidal Field for Tokamak Equilibrium

The plasma pressure and the magnetic stress tensor are given by?

B? B.B
Taﬁ:<p+—>6a,@_ @ /6

240 1o

]2 li B2 B2
Hop (ln%—ki—l) + 2n%a* <<p>+ﬂ—M +27RI,B, =0,
a
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dw

4

Fig.6.8 Volume element of a toroidal plasma.

Let us consider a volume element bounded by (w,w + dw), (¢,¢ + dg), and (0,a) as is shown
in fig.6.8. Denote the unit vectors in the directions r,z,¢ and p,w by e,,e.,e, and e,, e,
respectively. The relations between these are

. . de,, de,
e, =e,cosw+ e,sinw, €, = €,Ccosw — €, sinw, — = —e —t =e,.

Ow - Ow

(Here w is the same as w’ of sec.6.3). Let dS,, dS,,, dS, be surface-area elements with the normal
vectors e, e, e,. Then estimate the forces acting on the surfaces dSy (), dS,(¢+de) ; dSu(¢),
dSy(w+dw); and dS,(a). The sum F, of forces acting on dS,(¢) and dS, (¢ + dyp) is given by

oe oe,, de
= —dwdgo/ ( 0P 6<p Tpw 8(,0 —i—TWa—;) pdp

a
= —dwdgo/o (Tgw (eysinw — e, cosw) — Tgwe<p sin w) pdp.

When the forces acting on dS,(w) and dS,(w + dw) are estimated, we must take into account
the differences in e, Ti,q, dS, = (R + pcosw)dpdy at w and w + dw. The sum F', of forces is

F, = —dwdgp/ (TWi (ew (R+ pcosw))
0 Oow

0
—I-TW,% (ep (R4 pcosw)) + T,

9
Ow
i Re,, + P Re, + R Rep)dp

= dwdy (Rep/ Tgwdp> + dwdyp [ep (cosw/Tgwpdp—FR/Tugde)
0
1)
+e, <sinw/T£wpdp— R/ Ol dp)]
oT'\V
+dwdype,, (smw/T&Dpdp R/ wwd )
oTSy)
+dwdyp <—ewR/ Ddp - epR/ —*rq )
= dwdy (Rep / Tgwdp>
0
or'H
+dwdype, (cosw/Tgwpdp + R/ (Tu(,}u) — a_w) dp)
w
TS
+dwdype,, (sinw/Tgwpdp — R/ (Ta(,})) + 8—w> dﬂ)

(ep (R+ pcosw))

_|_
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1
TS ).
ow

As B,(a) = 0, the force F', acting on dS,(a) is

+dwdee, <sinw/T£wpdp — R/

F,=—-e/ T),(R+acosw)adpdw = ep(—Tl?pRa - (Tlg)Ra + Tgpa2 CosSWw)).

The equilibrium condition F', + F, + F, = 0 is reduced to

/Tcgwdp = T;?p(a)au

0 2sinw

o1y sinw
1 ww _ 0 0
/ <T£p) + ) dp="% (78, = 12,) pdp,
(1)
1
cosw/(T&p + T2 Vpdp + R/ <T£B - aa—p> dp — Tgpa2 COSW — Té},)Ra =0.
w

From T o sinw, cosw, it follows that 9?71 /ow? = —T(M. So eq.(6.30) is

8T£1) Ccosw
/ (8—wp - TuglJ)) dp=— /(Tgw —Tg,)pdp.

Using this relation, we can rewrite eq.(6.31) as

T,, and T, are given by

B: B? B: B?
Top=p+ s>+, Top=p+ 2> — 2
o 200 2p0 i 200 2p0

From eq.(6.14), By is

1 1
Bcp_ﬂ(;ﬂ_(;/}) _H;ﬁ(];/}) (1—%cosw+---> = B,(p) (1—%COSW+“‘)-

When B, (a) is written as B, (a) = B, + BU(JI), egs.(6.33) and (6.34) yield the expression

BaBthl) Bg%v(a) 9 a
= — — COSW.
1o 20 R

1
T3 (@)

On the other hand, egs.(6.9) and (6.32) give T,S;)(a) as

B2 BZ,(a) (B2) (B2)
- 2 20)

1 o a
15000 = e e

a B2 B2 B2 (a)
= —cosw [ =% + 2((p) — p,) — =& — &1~
R (2,“0 ({p) =) Ho o

o7

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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where [ is the normalized internal inductance of the plasma per unit length (the internal induc-
tance L; of the plasma per unit length is given by pol;i/47). Accordingly, BLI) must be

y_ @ L 200((p) — Pa)
BL)—EBacosw<§+B—g—1 .

B, is w component of the magnetic field due to the plasma current I, i.e.,

_ Holyp

B, = .
@ 2ra

When the poloidal ratio 3, (recall that this is the ratio of the plasma pressure p to the magnetic

pressure due to By) is used, BLI) is given by

a li
B = 7 Bacosw (5 + By — 1) . (6.35)

6.5 Upper Limit of Beta Ratio

In the previous subsection, the value of B, necessary for equilibrium was derived. In this
derivation, (a/R)A < 1 was assumed, i.e.,

(ﬁp+l—2i> < g.

The vertical field B for plasma equilibrium is given by

a S8R 1
Bi—Baﬁ <1H7+A—§>

The direction of B is opposite to that of B,, produced by the plasma current inside the torus, so
that the resultant poloidal field becomes zero at some points in inside region of the torus and a
separatrix is formed. When the plasma pressure is increased and 3, becomes large, the necessary
amount of B is increased and the separatrix shifts toward the plasma. For simplicity, let us
consider a sharp-boundary model in which the plasma pressure is constant inside the plasma
boundary, and in which the boundary encloses a plasma current I,. Then the pressure-balance
equation is

B B Bji
Y L T xp+ . 6.36
2u0 | 2m0 1 2p0 (6.36)

The ¢ components B, By; of the field outside and inside the plasma boundary are proportional

to 1/r, according to eq.(6.14). If the values of By, B at r = R are denoted by BS,V, Bgi

respectively, eq.(6.36) may be written as

R 2
B2 = 2u0p — (B — (B9 (1) -
The upper limit of the plasma pressure is determined by the condition that the resultant poloidal
field at r = ryi, inside the torus is zero,

2
"min
2M0pmaX—R2 = (BY,)* — (B%)*. (6.37)
As r is expressed by r = R + acosw, eq.(6.37) is reduced (with (rpim = R —a)) to

2
"min a w
Bc% = 2M0pmax (1 - T—2> = 8M0pmaxﬁ C052 E
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Here a/R < 1 is assumed. From the relation § B,adw = polp, the upper limit f, of the poloidal
beta ratio is

™R R
¢ = x~0.5=—. .
5p—16a 05a (6.38)

Thus the upper limit of S5 is half of the aspect ratio R/a in this simple model. When the
rotational transform angle ¢ and the safety factor ¢s = 27/¢ are introduced, we find that

&2(4) o
B, R\2r) Rg’

so that

P P B ? a \?
5 ~ Bo) (_> 3, 6.39
B jam B2 \B,) ~ \&e) P (6.39)
Accordingly, the upper limit of the beta ratio is

g — 0.5a
@R

(6.40)
6.6 Pfirsch-Schliiter Current?®

When the plasma pressure is isotropic, the current j in the plasma is given by eqgs.(6.1) and
(6.4) as

Then j” is
. 1 HoJ VB x B
%l _ 5, (VEX) (6.42)
gs <P B2 7 '

where s is length along a line of magnetic force. In the zeroth-order approximation, we can
put B x 1/R, p =p(r), and 0/0s = (00/0s)0/00 = (+/(2mR))0/06, where ¢ is the rotational
transform angle. When s increases by 2R, 6 increases by ¢. Then eq.(6.42) is reduced to

L 3j||_ op 2

R o)~ orkB Y
ie.,
3j|| 4w Op . . 47 Op
% = Bor sin 8, J = Bor cosf. (6.43)

This current is called the Pfirsch-Schliter current (fig.6.9). These formulas are very important,
and will be used to estimate the diffusion coefficient of a toroidal plasma. The Pfirsch-Schliiter
current is due to the short circuiting, along magnetic-field lines, of toroidal drift polarization
charges. The resultant current is inversely proportional to ¢.
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Fig.6.9 Pfirsch-Schliiter current j in a toroidal plasma.

Let us take the radial variation in plasma pressure p(r) and ¢ to be

wo=m(1-(2))

respectively; then j) is

. Armpy [\ ™23
J=- Buoa \a cosf.

6 Equilibrium

Let us estimate the magnetic field B® produced by Jy- As a/R is small, B? is estimated from
the corresponding linear configuration of fig.6.9. We utilize the coordinates (r,60’,() and put

0 = —0" and j| ~ jc (¢ is assumed not to be large). Then the vector potential AP = (0,0,Ag)

for BP is given by

10 aAf 1 82A? B .
ror \"or ) TR agr T THOC

When A?(r, 0') = AP(r)cos®’, and parameters s = m — 2] + 3, a = 4wmpouo/(Blg) =

mBoB/(tp/2m) (o is beta ratio) are used, we find

10 ( 047 _A_ﬂﬂ(fy
r Or r@r r2  a\a/) '

In the plasma region (r < a), the vector potential is

s+2
B ar
AL = <((s 22 Dt + 57’) cos 6’

and Agut outside the plasma region (r > a) is

A8 — Deos 0,
r

out —
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where § and  are constants. Since Bf , Bg, must be continuous at the boundary r = a, the
solution for B? inside the plasma is

s+1

+3
i (f) _5 in6
" (s—l—2)2—1< a 9 )%

o r\*t 543 (6.44)
ﬂ _ o o /
By = Gror-1 <(s+2) (a) 5 )cos@
and the solution outside is
2
6 _ a s+1 <g> ey
By (s+22-1 2 \r sind,
— +1 [a)\?
Bﬁ — aQ S <_> 0/
" (5+22-1 2 \r)
(BT_zlg_igAC/aﬁ’, Bg = —0A¢/0r). As is clear from eq.(6.44), there is a homogeneous
vertical-ield component
B — —(s+3)a  —(m—-24+6)m 8 B = —f(m.l) 8 B
T 2((s+2)2-1)  2((m—20+5)2—1) (wp/27) " (1o /2m)

This field causes the magnetic surface to be displaced by the amount A. From eq.(3.42), A is
given by

A =2rB,

R qas

g
(to/2m)%

f(m,1) is of the order of 1 and the condition A < a/2 gives the upper limit of the beta ratio:

1a L\ 2
Wﬁ(%)'

This critical value is the same as that for the tokamak.

~ f(m,1)

6.7 Virial Theorem

The equation of equilibrium j x B = (V x B) x B = Vp can be reduced to

0 Op
E ,—Tz — = =9 6.45
where
Ty, = —(BiBy, — 5 B%0;1.). (6.46)
Ho 2

This is called the magnetic stress tensor. From the relation (6.45), we have

/((p—FB—Q)n—M) dS=0 (6.47)
S 210 1o

where n is the outward unit normal to the closed surface surrounding a volume V.
Since the other relation

o 0
21: pr (@ (Tik — pdik)) = (T — p) + @k 2; 92, (Tir — poik) = (Thr — p)
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holds,it follows that

Ay B\ BB
/\/<3p+ %> dV—/S<<p+2MO>(r ) m )dS. (6.48)

This is called the virial theorem. When a plasma fills a finite region with p = 0 outside the
region, and no solid conductor carries the current anywhere inside or outside the plasma, the
magnitude of the magnetic field is the order of 1/r3, so the surface integral approaches zero as
the plasma surface approaches infinity (r — 0). This contradicts that the volume integral of
(6.48) is positive definite. In other words, a plasma of the finite extent cannot be in equilibrium
unless there exist solid conductors to carry the current.

Let us apply the virial theorem (6.48) and (6.47) to a volume element of an axisymmetric
plasma bounded by a closed toroidal surface S; formed by the rotation of an arbitrary shaped
contour l;. We denote the unit normal and tangent of the contour Iy by n and I respectively and
a surface element of the transverse cross section by dS,. The volume and the surface element
are related by

dV = 27rdS,.
The magnetic field B is expressed by
B = B,e, + B,
where By, is the poloidal field and B, is the magnitude of the toroidal field and e, is the unit

vector in the ¢ direction.
Let us notice two relations

/ro‘(r -n)dS; = (o + 3) /ro‘dV (6.49)

/Ta(er -n)dSy = /V . (Taer)dV _ /laéraﬂdv

T ar
=(a+1) /r(a’l)dV = 2r(a + 1)/r°‘d5¢ (6.50)

where e, is the unit vector in the r direction. Applying (6.48) to the full torus surrounded by
Si, we get

B? + B? B? 4 B? .
240 240 1o

- B} - B? BBy B,

because of B, = Bjl + B,n (see fig.6.10a). When the vacuum toroidal field (without plasma) is
denoted by B, this is given by Byo = pol/(27r), where I is the total coil current generating

the toroidal field. By use of (6.50), (6.51) reduces to*

B2+ B} — B2
/ <3p—|— b % 70 9npdS,

210
_ BI=Ba\ . o BBl
_/<<p+ o )( )- = )) ds,. (6.52)

Applying eq.(6.47) to the sector region surrounded by ¢ = 0, = Ap and S; (see fig.6.10b)
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.
Se=ay

T
Se
Iy

(a) (b)

Fig.6.10 Integral region of Virial theorem (a) (6.48) and (b) (6.47).

and taking its r component gives?

2

B> B A B? B.e)(B-
_A(p/ p— e dS¢+—¢/ P+ (n.er)_w dS, =0
20 Mo 2m 210 Ho

B2 — B2 + B2 B2 — B2 B,B
27r/<p+ - wO)d&p—/((p—i—u)(n-er)— l”(l-er)> dS; = 0.

2410 210 o

(6.53)

Egs. (6.52) and (6.53) are used to measure the poloidal beta ratio (6.18) and the internal plasma
inductance per unit length (6.23) of arbitrary shaped axisymmetric toroidal plasma by use of
magnetic probes surrounding the plasma.
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Ch.7 Diffusion of Plasma, Confinement Time

Diffusion and confinement of plasmas are among the most important subjects in fusion re-
search, with theoretical and experimental investigations being carried out concurrently. Al-
though a general discussion of diffusion and confinement requires the consideration of the vari-
ous instabilities (which will be studied in subsequent chapters), it is also important to consider
simple but fundamental diffusion for the ideal stable cases. A typical example (sec.7.1) is clas-
sical diffusion, in which collisions between electrons and ions are dominant effect. The section
7.2 describe the neoclassical diffusion of toroidal plasmas confined in tokamak, for both the
rare-collisional and collisional regions. Sometimes the diffusion of an unstable plasma may be
studied in a phenomenological way, without recourse to a detailed knowledge of instabilities. In
this manner, diffusions caused by fluctuations in a plasma are explained in secs.7.3 and 7.4.

The transport equation of particles is

0
S, 0)+ V- (n(r, )V (r,1) = 0 (7.1)

provided processes of the ionization of neutrals and the recombination of ions are negligible (see
ch.5.1). The particle flux I' = nV is given by

n(r,t)V(r,t) = —=D(r,t)Vn(r,t)

in many cases, where D is diffusion coefficient. (Additional terms may be necessary in more
general cases.)

Diffusion coefficient D and particle confinement time 1, are related by the diffusion equation
of the plasma density n as follows:

V- (DVn(r,t)) = —n(r,t).

Substitution of n(r,t) = n(r)exp(—t/m,) in diffusion equation yields

V- (DVn(r) = — —n(r).

Tp

When D is constant and the plasma column is a cylinder of radius a, the diffusion equation is
reduced to

1o (o) 1,
r Or Tar DTpn_ '

The solution satisfying the boundary condition n(a) = 0 is

2.4r t
n = ngJoy 0 exp -
p

and the particle confinement time is

a? a?

Tp:—:

242D  5.8D’ (7.2)

where Jy is the zeroth-order Bessel function. The relationship (7.2) between the particle con-
finement time 7, and D holds generally, with only a slight modification of the numerical factor.
This formula is frequently used to obtain the diffusion coefficient from the observed values of
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the plasma radius and particle confinement time.

The equation of energy balance is given by eq.(A.19), which will be derived in appendix A,

as follows:
8 3 3 8vl-

The first term in the right-hand side is the heat generation due to particle collisions per unit
volume per unit time, the second term is the work done by pressure and the third term is viscous
heating. The first term in the left-hand side is the time derivative of the thermal energy per
unit volume, the second term is convective energy loss and the third term is conductive energy
loss. Denoting the thermal conductivity by kT, the thermal flux due to heat conduction may be
expressed by

q = —rk1V(KT).

If the convective loss is neglected and the heat sources in the right-hand side of eq.(7.3) is zero,
we find that

0

3
g <§n/<;T> — V- krV(kT) = 0.

In the case of n = const., this equation reduces to

% (ng) =V. (%V(HT)) )

When the thermal diffusion coefficient yT is defined by

RT
XT = —»
n

the same equation on kT is obtained as eq.(7.1). In the case of y = const., the solution is
2.4 ¢ a?
T =rkTpJo | — —— = — 7.4
K Klg o( a r)exp( ), TE 5.8(2/3)x1 (7.4)

The term 7g is called energy confinement time.

7.1 Collisional Diffusion (Classical Diffusion)

7.1a Magnetohydrodynamic Treatment

A magnetohydrodynamic treatment is applicable to diffusion phenomena when the electron-
to-ion collision frequency is large and the mean free path is shorter than the connection length
of the inside regions of good curvature and the outside region of bad curvature of the torus; i.e.,

UTQSQWR’
Vei L
S 1 1 </<;Te>1/2
Ve S Vp = ——VUTe = — —
AP T Ror T Rom \me

where v, is electron thermal velocity and v is electron to ion collision frequency. From Ohm’s
law (5.28)

1
E+vxB-—Vp=nj,
en

the motion of plasma across the lines of magnetic force is expressed by

1 kT MeVei VP
nvl—E(<nE— €Vn)xb)— 2 B2
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Fig.7.1 Electric field in a plasma confined in a toroidal field. The symbols ® and ® here show the
direction of the Pfirsch-Schliiter current.

= % (<nE — “eTivn) X b) — (pae)*Vei (1 + %) Vn (7.5)

where poe = v1e/ 26, Ve = (/<cTe/me)1/2 and 7 = Melei/e*ne (see sec.2.8).
If the first term in the right-hand side can be neglected, the particle diffusion coefficient D is
given by

T;
D = (er)2Vei (1 + T) . (76)
The classical diffusion coefficient De; is defined by
nT, Ben)|

Dei = (,Oﬂe)2Vei = (77)

o B2 fo
where 0, = nee?/(Mevei), n = 1/20,.

However the first term of the right-hand side of eq.(7.5) is not always negligible. In toroidal
configuration, the charge separation due to the toroidal drift is not completely cancelled along
the magnetic field lines due to the finite resistivity and an electric field E arises (see fig.7.1).
Therefore the E x b term in eq.(7.5) contributes to the diffusion. Let us consider this term.
From the equilibrium equation, the diamagnetic current

. _b . |10p
JL = B b, JL = Bor
flows in the plasma. From V.7 = 0, we find V- j; = =V - j,. By means of the equation
B = By(1 — (r/R) cos ), j may be written as (see eq.(6.43))
2t 1 Jp
| =2——— . 7.8
I t By or cos (7.8)

If the electric conductivity along the magnetic lines of force is o), the parallel electric field is
Ey = jj/o)- Asis clear from fig.7.1, the relation

Ey _ By

holds. From By/By ~ (r/R)(¢/27), the § component of the electric field is given by

o Il ol GV

B o 1 2 2r\? 1
OF LEI R( W) —@COSQ. (7.9)

By | oL oo o\t

Accordingly eq.(7.5) is reduced to

TLV} = —HE — (,OQe)Ql/ei (1 + i E
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Fig.7.2 Magnetic surface (dotted line) and drift surfaces (solid lines).

R 21\ 2 nkT, T
(r (L) O'||B§COS ( —I-Rcos )
nkd, r 2 T\ On
1+ — 0 1+— ) —.
+O'LB(2)( +RCOS ))X( +Te> or

Noting that the area of a surface element is dependent of 8, and taking the average of nV, over
0, we find that

( v>—i/27r V(l+£cos€>d9
nr_27ro " R

nkT, T 20| (27r>2 on
= 1+ =) [1+= (= . 7.10
ULB(Q) ( + Te) < * o L or ( )

Using the relation 0 = 0 /2, we obtain the diffusion coefficient of a toroidal plasma:

nT, T 27\ 2
Dpg = 1+=2) (1 ——— ) 11
Q%( +Te)< +(L)) (7.11)

This diffusion coefficient is (1 + (27/¢)?) times as large as the diffusion coefficient of eq.(7.2).

This value is called Pfirsch-Schliiter factor!. When the rotational tranform angle +/27 is about
0.3, Pfirsch-Schliter factor is about 10.

7.1b A Particle Model

The classical diffusion coefficient of electrons

Do = (pﬂe)QVei

is that for electrons which move in a random walk with a step length equal to the Larmor radius.
Let us consider a toroidal plasma. For rotational transform angle ¢, the displacement A of the
electron drift surface from the magnetic surface is (see fig.7.2)

2
Ax j:erTﬂ—. (7.12)

The + signs depend on that the direction of electron motion is parallel or antiparallel to the
magnetic field (see sec.3.5). As an electron can be transferred from one drift surface to the other
by collision, the step length across the magnetic field is

= () 19
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Consequently, the diffusion coefficient is given by

27\ 2
Dpgs. = A%vy = (T) (pare)? Ve, (7.14)

thus the Pfirsch-Schliiter factor has been reduced (|27/¢| > 1 is assumed).

7.2 Neoclassical Diffusion of Electrons in Tokamak

The magnitude B of the magnetic field of a tokamak is given by

RB,

B=——"—7""—=DB;1-— 0 7.15
R(1 + € cosb) o1 — e cosd), (7.15)
where
”

Consequently, when the perpendicular component v of a electron velocity is much larger than
the parallel component v, i.e., when

2
(%) > 7
v R+r

that is,

V] 1
—_— > —, (7.17)
vl

the electron is trapped outside of the torus, where the magnetic field is weak. Such an electron

drifts in a banana orbit (see fig.3.9). In order to complete a circuit of the banana orbit, the
effective collision time Tog = 1/veg of the trapped electron must be longer than one period 7, of

banana orbit
R /27 R 27
Il V] €

The effective collision frequency veg of the trapped electron is the frequency in which the con-
dition (7.17) of trapped electron is violated by collision. As the collision frequency v is the
inverse of diffusion time required to change the directon of velocity by 1 radian, the effective
collision frequency veg is given by

1
Voff = — Vi (7.19)
€t

Accordingly, if veg < 1/7, i.e.,

3/2 1/2
. _vie (e sl HTe>
Vi <vp=—p (271-) =& 5 (277) (me (7.20)

the trapped electron can travel the entire banana orbit. When the trapped electron collides, it
can shift its position by an amount of the banana width (see sec.3.5(b))

A — mup  mug Y B 61/252_7T _ (2_7T> ~1/2

N —— ~ . 7.21
eBy eB v, B, PQety oL L € Poe ( )
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Fig.7.3 Dependence of the diffusion coefficient on collision frequency in a tokamak. v, = (¢/2m)vre/R,
Vp = € UVp.

As the number of trapped electrons is etl/ % times the total number of electrons, the trapped-
electron contribution to diffusion is

2
1/2 1/2 (2w _ 1
Dgs. = et/ A%l/eﬁ“ = et/ (T) € l(pge)2€—tuei

_ 2\ 2
=& i (7) (Pae)*Vei- (7.22)

This diffusion coefficient, introduced by Galeev-Sagdeev,? is €, 3% = (R/r)?/? times as large as
the diffusion coefficient for collisional case. This derivation is semi-quantitative discussion. The
more rigorous discussion is given in ref.2.

As was discussed in sec.7.1, MHD treatment is applicable if the electron to ion collision
frequency is larger than the frequency v}, given by

1. 1/ KT, 1/2
l/p = E%UTQ = E (%) (me) . (723)

When the electron to ion collision frequency is smaller than the frequency

v, = ef/QVp, (7.24)

the electron can complete a banana orbit. The diffusion coefficients are witten by

27T 2 2

Dpgs. = T (pﬂe) Vei, Vei > Vp, (725)
—3/2 (2w 2 9 3/2

Dgs. =€ (T) (PQe) Vei, Vei < Vb =€, Vp. (7.26)

If v is in the region 1, < v < v}, , it is not possible to treat the diffusion phenomena of
electrons in this region by means of a simple model. In this region we must resort to the drift
approximation of Vlasov’s equation. The result is that the diffusion coeflicient is not sensitive
to the collision frequency in this region and is given by?3

_ (27 ? 2 _3/2
Dy = (=) (pae)vp,  vp>vei > v =€ vp. (7.27)

The dependence of the diffusion coefficient on the collision frequency is shown in fig.7.3. The
region ve; > 1, is called the MHD region or collisional region. The region v, > v > 1, is
the platau region or intermediate region; and the region ve; < vy, is called the banana region or
rare collisional region. These diffusion processes are called neoclassical diffusion. There is an
excellent review? on neoclassical diffusion.

The reason that the electron-electron collison frequency does not affect the electron’s particle
diffusion coefficient is that the center-of-mass velocity does not change by the Coulomb collision.
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The neoclassical thermal diffusion coefficient yT. is the same order as the particle diffusion
coefficient (xe ~ D.). Although ion collision with the same ion species does not affect the
ion’s particle diffusion coefficient, it does contribute thermal diffusion processes, if temperature
gradient exists. Even if the ions are the same species with each other, it is possible to distinguish
hot ion (with high velocity) and cold ion. Accordingly the ion’s thermal diffusion coefficient in

C —3/2
banana region is given by xTi ~ € / (2m/1)? v, and xTi ~ (mi/me)l/zDie (Die ~ Dei).
Therefore ion’s thermal diffusion coefficient is about (mj;/m¢)*/? times as large as the ion’s
particle diffusion coefficient.

7.3 Fluctuation Loss, Bohm Diffusion, and Stationary Convective Loss

In the foregoing sections we have discussed diffusion due to binary collision and have derived
the confinement times for such diffusion as an ideal case. However, a plasma will be, in
many cases, more or less unstable, and fluctuations in the density and electric field will induce
collective motions of particles and bring about anomalous losses. We will study such losses here.

Assume the plasma density n(r,t) consists of the zeroth-order term ng(r,t) and lst-order
perturbation terms ng(r,t) = ngexp i(kr — wyt) and

Y (7.28)
k

Since n and ng are real, there are following relations:
7~”L,k = (ﬁk)*, n_p = n;;, W_f = —w};.

where * denotes the complex conjugate. wy is generally complex and wy = wg, + iy and
W—kr = —Wkr;  T—k = Vk-

The plasma is forced to move by perturbation. When the velocity is expressed by

Virt)=> V=Y Viexpi(k-r —wyt) (7.29)
k k

then V_j, = V7 and the equation of continuity

on

may be written as

8??,0 8nk
E"F WJFV (Znovk‘i‘%nkvk/)—o

When the first- and the second-order terms are separated, then

> o ank +V- Y Vi =0, (7.30)
% +V- (Z nka/> —0. (7.31)
kK’

Here we have assumed that the time derivative of ng is second order. The time average of the
product of eq.(7.30) and n_j becomes

Yilne? + Vng - Re(ngV _i) + nok - Im(n, V _j) = 0, } (7.32)

wkr|nk|2 + Vng - Im(nkV_k) —nok - Re(nkV_k) =0.
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If the time average of eq.(7.31) is taken, we find that

0

% + 7 (Y Re(nkV_y) exp(23t)) = 0. (7.33)
The diffusion equation is

8’00

Y _v.(D

ot \Y% ( vno)
and the outer particle flux I is

I'=—-DVng= Y Re(n;V_)exp2yt. (7.34)

k

Equation (7.32) alone is not enough to determine the quantity Vng-Re(niV _) exp 2,t. Denote
Br = nok - Im(nkV _k)/ Vng - (Re(nkV _i)); then eq.(7.34) is reduced to

> el |2 exp 27t

D|Vngl? =
Vol 1+ B
and
> 1
D = 7.35
Z kW”o’QH—ﬁk (7.35)

This is the anomalous diffusion coefficient due to fluctuation loss.

Let us consider the case in which the fluctuation Ek of the electric field is electrostatic and
can be expressed by a potential ¢;. Then the perturbed electric field is expressed by

E’k = —V&k = —ik- qbk expi(k:r — wkt).
The electric field results in an Ej x B drift, i.e.,
Vi = (E, x B)/B?> = —i(k x b)¢y,/B (7.36)

where b = B/B. Equation (7.36) gives the perpendicular component of fluctuating motion. The
substitution of eq.(7.36) into eq.(7.30) yields

bxk)@
B wk'

T~Lk = vno . ( (7.37)
In general Vngy and b are orthogonal. Take the z axis in the direction of b and the z axis in

the direction of —Vn, i.e., let Vn = —k,no&, where k,, is the inverse of the scale of the density
gradient and & is the unit vector in the x direction. Then eq.(7.37) gives

T~Lk K.

_n_ng Kle epr _ Wy €Ok
ng B wy, fon eBwp kT,  wy kKT,

where k, the y (poloidal) component of the propagation vector k. The quantity

is called the drift frequency. If the frequency wy is real (i.e., if v = 0), ng and ¢ have the
same phase, and the fluctuation does not contribute to anomalous diffusion as is clear from
eq.(7.35). When 75 > 0, so that w is complex, there is a phase difference between 7 and ¢
and the fluctuation in the electric field contributes to anomalous diffusion. (When 7, < 0, the
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amplitude of the fluctuation is damped and does not contribute to diffusion.) Using the real

parameters Ay, oy of wy = wir+iv, = wiAg expiay (Ag > 0, oy are both real), V, is expressed
by

~ . KT, qgk KT, Ny, Wrr + fykz kT, Ny,
Vi=—i(lkxb — = kxb —_ kxb —A
k i(k x )eB Wl —i( )eB o W —i( ) 0 k €XP 1,
g KTe Yk — Wit nk Ko, . ,
Viw = =ky— —_ —iA )
Yno eB Wy Yno eB ( iy exp i)

Then the diffusion coefficient may be obtained from eq.(7.34) as follows:

T, k i |?
) lZBe = (Z ,i—yAkSinOzk %

k n nO

e |2

D=

Re(ApV ) = (Z ik

*
o Wy

kT,
P o ) B (7.38)

The anomalous diffusion coefficient due to fluctuation loss increases with time (from egs. (7.35)
and (7.38)) and eventually the term with the maximum growth rate v, > 0 becomes dominant.
However, the amplitude |7;| will saturate due to nonlinear effects; the saturated amplitude will
be of the order of

I7igs| = [Vno| Az & “2ng.
ko

Az is the correlation length of the fluctuation and the inverse of the propagation constant k, in
the z direction. Then eqs.(7.35) or (7.38) yield
i |

~ 5 (7.39)

no

When the nondimensional coefficient inside the parentheses in eq.(7.38) is at its maximum of
1/16, we have the Bohm diffusion coefficient

1 kT,

D
B~ 16eB"

(7.40)

It appears that eq.(7.40) gives the largest possible diffusion coefficient.

When the density and potential fluctuations 7y, &k are measured, Vi can be calculated,
and the estimated outward particle flux I" and diffusion coefficient D can be compared to the

values obtained by experiment. As the relation of 7, and ¢y is given by eq.(7.37), the phase
difference will indicate whether wy, is real (oscillatory mode) or 45 > 0 (growing mode), so that
this equation is very useful in interpreting experimental results.

Let take an example of the fluctuation driven by ion-temperature-gradient drift instability?®
(refer sec.8.6). The mode is described by

o(r,0,z2) Zqﬁmn r)exp(—imb + inz/R).

The growth rate of the fluctuation has the maximum at around kg = —i/rd0/00 = —m/r of 4

kol = =~ 20 0y =0.7~08.

1

Then the correlation length Ay in 6 direction is Ag ~ pi/ag (p; is ion Larmor radius).
The propagation constant & along the magnetic line of force near the rational surface q(r,,) =

m/n is
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Fig.7.4 In the upper figure, the radial width of eigenmode Ar is larger than the radial separation of
the rational surfaces Ar,,. A semi-global eigenmode structure Ar, takes place due to the mode
couplings. In the lower figure, the radial width of eigenmode Ar is smaller than the radial separation of
the rational surfaces Ar,,. The modes with the radial width Ar are independent with each other.

) By (—m Bi /n 1 m m rq s
I =V B(r)+B<R> R<” q(r)> PR gz ) = gkl

where ¢(r) = (r/R)(By/Bp) is the safety factor (Bp and By are poloidal and toroidal fields
respectively) and s is the shear parameter s = r¢’/q.
k)| is larger than the inverse of the connection length R of torus and is less than the inverse

of -say- the pressure gradient scale Ly, that is

1 1
— < |k < —.
ok <l <7

The radial width Ar = |r—r,,| of the mode near the rational surface = r,, is roughly expected
to be

Ar=|r—r |:@k—|:£~0<&>
mn s kp sy s/)

The estimated radial width of the eigenmode of ion-temperature-gradient driven drift turbulence

is given by®
1/2
Ar = <QR>/ <’Yk>1/2
r=p|— .
sLy Wy

The radial separation length Ar, of the adjacent rational surface r,, and ry, 41 is

m+1 m 1 1 m/n r 1
¢ Arp = q(rms1) — q(rm) = ——=-, Arm=—= /, o
T n n ng rqg m skg

When the mode width Ar is larger than the radial separation of the rational surface Ary,,
the different modes are overlapped with each other and the toroidal mode coupling takes place
(see Fig.7.4). The half width Ar, of the envelope of coupled modes is estimated to beb:7:8

L 1/2
Arg = (p8p> .
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¢:con>sx

Fig.7.5 Magnetic surface %b = const. and electric-field equipotential ¢ = const. The plasma moves
along the equipotential surfaces by virtue of E x B.

The radial correlation length becomes large value of Ary (Arg/Ar ~ (L,/p;)'/?) and the radial
propagation constant becomes k, ~ 1/Ar,. In this case, the diffusion coefficient D is

Ly

pi KT oy
D = (ATg)Q’)/k ~ IT(,U;; ~ —

eB s
where wj is the drift frequency. This coefficient is of Bohm type.

When the mode width Ar is less than Ar,, (weak shear case), there is no coupling between
different modes and the radial correlation length is

1/2
qR

AT = pPi <ST> .
p

The diffusion coefficient D in this case is

R korT KT p; [ cgqR KT p;
D~ (Ar)2f ~ p2 [ 2 ~— — 7.41
(Ar)"wi ~ i <st eBL, )~ eBL, \ sL, ) eBL, (7.41)
This is called by gyro Bohm type diffusion coefficient. It may be expected that the transport

in toroidal systems becomes small in the weak shear region of negative shear configuration near
the minimum ¢ position (refer sec.16.7).

Next, let us consider stationary convective losses across the magnetic flux. Even if fluctuations
in the density and electric field are not observed at a fixed position, it is possible that the plasma
can move across the magnetic field and continuously escape. When a stationary electric field
exists and the equipotential surfaces do not coincide with the magnetic surfaces ¢ = const., the
E x B drift is normal to the electric field F, which itself is normal to the equipotential surface.
Consequently the plasma drifts along the equipotential surfaces (see fig.7.5) which cross the
magnetic surfaces. The resultant loss is called stationary convective loss. The particle flux is
given by

E

The losses due to diffusion by binary collision are proportional to B~2; but fluctuation or
convective losses are proportional to B~!. Even if the magnetic field is increased, the loss due
to fluctuations does not decrease rapidly.

7.4 Loss by Magnetic Fluctuation

When the magnetic field in a plasma fluctuates, the lines of magnetic force will wander
radially. Denote the radial shift of the field line by Ar and the radial component of magnetic
fluctuation § B by d B, respectively. Then we find

L
Ar:/ b,dl,
0
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where b, = 0B, /B and [ is the length along the line of magnetic force. The ensemble average of
(Ar)? is given by

(Ar)?) = </OL by di /OL b, dl’> - </OL di /OL dl' b, (1) br(l’)>
= </0L dl /_Ll_l ds b, (1) b (1 + 5)> ~ L<b%>lcorr,

where lqopr 18

leoms = (S22 b (D) b1+ 5) ds>'
(v2)

T

If electrons run along the lines of magnetic force with the velocity vre, the diffusion coefficient
D, of electrons becomes®

r)? 2
De = % = é<b72ﬂ>lcorr - ’UTelcorr <<5§T) > . (743)

We may take l.o;r ~ R in the case of tokamak and l.o;; ~ a in the case of reverse field pinch
(RFP, refer sec.17.1).
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