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Tomography and reliable information
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Principles of tomography are developed and applied to the problem of two-view interferometry on a tokamak
plasma. It is shown that M equispaced views, or projections, of a two-dimensional object yield precisely M 2 + M
numbers characterizing the object. This result is an extension of the previous work of Niland [J. Opt. Soc. Am. 72,
1677 (1982)], who proved that M2 generalized Fourier coefficients, or moments of the object, could be retrieved by
M-view tomography. Furthermore it is shown that only half of the alias-free numbers are useful in reconstructing a
uniform image of the unknown object. Questions of sampling within a view are addressed and the aliasing
contaminants explicitly identified. An algorithm using an orthogonal expansion in the frequency domain is used to
examine the attributes of the image reconstructed using various subsets of the available Fourier coefficients.

1. INTRODUCTION

To resolve experimentally many of the issues relating to the
physics of magnetically confined fusion plasmas, there is a
great need for an accurate, high-resolution spatial and tem-
poral measurement of the two-dimensional plasma electron
density distribution. In general, the density distribution is
inferred from interferometric measurements of the plasma-
produced phase shift in one or more discrete beams of prob-
ing radiation. This phase shift is related to the integral of
the electron density ne along the line of sight by'

X = rX | nedl, (1)

where re is the classic electron radius and X is the wavelength
of the probing radiation. In tokamak fusion devices, re-
stricted diagnostic access and technical limitations have
meant that measurements of the phase shift have usually
been available for only a small set of parallel chords in a
vertical cross section of the plasma. It is often a reasonable
assumption that the plasma possesses circular symmetry so
that ne(r) may then be recovered by Abel inversion of Eq.
(1). In more recent tokamak devices, however, the plasma is
more closely bean shaped or D shaped than circular. When
the assumption of circular symmetry must be abandoned
and not withstanding that several useful approaches have
been developed,' 4 little can be determined with certainty
about the plasma profile from a single view or projection
(i.e., a complete set of line integrals at fixed angle) and in the
absence of other a priori knowledge. To resolve the ambigu-
ities one requires measurements of 0 at other viewing angles
so that tomographic reconstruction techniques can be used.

Advances in far-infrared detector technology, 5 coupled
with the application of imaging techniques, have recently
culminated in the construction and operation of a two-di-
mensional phase-imaging interferometer capable of provid-
ing simultaneously forty or more channels of information in
two orthogonal views of the UCLA Microtor tokamak plas-
ma.6-8 This enhanced capability has permitted extraction
for the first reported time of two-dimensional information

about the plasma distribution that in no way depends on
imposed a priori assumptions or constraints. Clearly, how-
ever, with just two complete projections or views of the
plasma, the amount of reliably recovered information is
small, and the reconstructed image will reveal only the gross
features of the plasma.

This assertion is made precise by Niland, 9 who shows that,
given a system providing M complete views of an object that
are equispaced in angle, one may extract from the projec-
tions M2 real numbers that characterize the object. (A com-
plete view is defined as the collection of all line integrals
through the tomographic object along lines parallel to a
given line.) These numbers are the generalized moments of
the object and are free from angular aliasing contamination.
More particularly, the moments can be shown to correspond
to a well-defined subset of the expansion coefficients in an
orthogonal polynomial representation of the source and its
set of projections first developed by Cormack10 and often
used in x-ray tomography on plasmas.

The question of reliable information and reconstruction
from a finite set of complete projections has also been ad-
dressed by Klug and Crowther.11 Adopting a Fourier-space
approach, they pose the reconstruction process as an eigen-
value problem and identify three distinct boundaries or cut-
offs in the eigenvalue spectrum. The first cutoff encom-
passes the collection of unaliased eigenfunctions, which
yields a reconstruction that is uniformly resolved. A uni-
form reconstruction is one that reliably represents the object
spectrum out to some maximum frequency wo. The second
cutoff includes the above functions as well as those unaliased
eigenfunctions having the same condition for extraction of
their associated eigenvalues from the projection data (and so
subject to the same level of noise amplification) as any of
those contributing to the uniform reconstruction. The radi-
al terms in this set are characterized by a particular value of
the parameter v = 1 + 2s, which, in addition to governing the
noise susceptibility, determines the number of zeros and so
to some extent the resolution within a projection obtained
by the polynomial eigenfunction. This boundary is thus
called the I + 2s cutoff. Finally, they identify the set con-
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sisting of all the functions that are uncontaminated by azi-
muthal aliasing.

The main thrust of this paper is to unify these two ap-
proaches and to consider the validity of the results in the
usual case of discretely sampled projections. Since this in-
vestigation was motivated by a need to extract reliable infor-
mation from the two-view Microtor interferometer (whose
projections are band limited by diffraction and sampled at
the Nyquist rate), some specific attention is given to the
problems of such small M configurations.

The paper is structured as follows. In Section 2 we briefly
examine the frequency-space properties of a bounded two-
dimensional object and develop an orthogonal expansion
that, by way of the projection theorem, is shown to be related
directly to the Cormack expansions for the source and its set
of projections. By using this representation, it is shown that
Niland's fundamental result can in fact be extended to in-
clude an extra M alias-free numbers that are associated with
the Mth azimuthal term in the Fourier series expansion of
the source. An intuitive explanation for Niland's result is
provided by examination of the frequency-plane behavior of
such a harmonic expansion.

In Section 3 we address the problem of reconstructing an
image from the known set of reliable quantities. It is shown
that only half of the M 2 + M low-order reliable moments are
required to produce an image that is uniform in the sense
defined in Ref. 11. The Mth-harmonic terms, in the absence
of other knowledge about the object, are not useful for image
reconstruction. Nevertheless the additional information, in
a given application, may be extremely valuable, particularly
when the number of views is small. It is found that the
cutoff in the spectrum of moments required for a uniform
reconstruction in this Cormack representation also includes
all those unaliased functions having the same level of noise
susceptibility as any member of the uniform set. In this
picture, then, the uniform and the I + 2s cutoffs are no longer
distinct.

When the M projections are not assumed complete, i.e.,
are sampled at only a finite number N of discrete chordal
positions (the situation usually encountered in practice), the
above results can no longer be strictly applied. What can be
asserted in a given situation depends on the nature of the
object (its bandwidth) as well as the number of projections
and the sampling rate within the projections. These points
are dealt with in some detail in Section 3. Finally, in Section
4 an algorithm for image reconstruction that employs the
above-mentioned frequency-plane representation and that
is appropriate when the numbers of samples M and N are
large is proposed and demonstrated on some computer-gen-
erated phantoms. This approach permits manipulation of
the Fourier image before inversion while retaining the favor-
able attribute of using only those numbers that are known to
be relatively free of aliasing contamination.

2. TOMOGRAPHY AND RELIABLE
INFORMATION

We now give a frequency-plane derivation of Niland's result.
This approach yields the main result in a slightly more
intuitive and insightful manner by consideration of the fre-
quency-space properties of a bounded two-dimensional ob-
ject. The projection theorem, which links the two-dimen-

sional Fourier transform of the unknown function with the
one-dimensional transform of its projections, provides a
powerful tool for relating these properties to the projections.
In addition, examination of the .-space behavior of a recon-
struction based on the quantities known to be free from
aliasing contamination reveals how uniformly features of a
given size are represented in the domain of the final image.
This is important since it is desirable that a tomography
system using a finite number of views act as an ideal low-pass
filter and so transmit the spectrum of the source function
uniformly, i.e., without distortion, out to some effective sys-
tem band limit. Finally, a reconstruction algorithm that
uses the Fourier-plane representation of the source function
and can be effectively implemented on computer is shown to
have some advantages.

Let the object 4'(x, y) be contained in the unit circle, and
let G(t, if) be the line integral of if(x, y) along the straight line
ysinifi+xcos =t,whereO<40<27rand-1<t<1. The
function G is called the shadow of the object A, and the set of
line integrals or rays at fixed / for -1 ' t ' 1 is called a view
or projection of 4f. The projection, or central-slice, theorem
then gives the following fundamental result:

J dtG(t, )exp(-iwt) = J dx J dyi(x,y)

X exp[-iw(x cos 0 + y sin 4)]

= I(u, v), (2)

where I(u, v) is the two-dimensional Fourier transform of
{(x, y) and (u, v) = (w cos X, w sin 0) are the spatial frequency
coordinates in w space. A set of M equispaced views thus
generates a pattern of 2M lines or spokes radiating from the
origin and separated in angle by Ir/M in the Fourier-trans-
form plane of A,. This is depicted for M = 2 views in Fig. 1.
Without loss of generality, we take these lines to be at angles

{¢0m 0m = m7r/M, m = O. 1, 2, . .. , 2M- 1},

corresponding to a set IGM(t)} of equispaced views at the first
M angles 0,

m:

IGm(t):Gm(t) = G(t, Om), m = 0, 1, 2, .. , M - 1}.

Note that the projections are assumed complete.
Since A is contained within the unit circle, it may also be

expressed in terms of polar coordinates. We choose now to
denote this object f(r, 6), and the natural periodicity in
azimuth facilitates expansion as a Fourier series:

i(r, 0) = E exp(i16)fl(r). (3)

An alternative expression for T is obtained by expressing the
right-hand side of Eq. (2) in terms of polar coordinates and
substituting for 4(r, 0) from Eq. (3). Writing T = T(w, 4),
we find that

'I(w, 4) = E exp(ilo)Fl(w), (4)

where the Fourier components are

F1 (w) = 27r(-i)l f rdrf 1 (r)J1(wr) (5)
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Fig.1. Geometry for the two-view tomography problem. (a) Orthogonal views of the object 4(r,0) at angles Xl and 42 =01 + 7r/2. (b) The two

views determine the value of the transform of the unknown object along radial lines through the origin at angles 0l and 02.

and are proportional to the Hankel transform of fl(r) of order

Since the object A is spatially bounded, its transform 'I is
analytic over the whole co plane' 2 so that the Fourier compo-
nent F1 can be expanded as a Taylor series:

F1(c) = E c1 nCc'.

n=O

It is desirable to orthogonalize this basis, and the expansion
in terms of Bessel functions' 3

(in = 2n i (n + ) ) Jn+2,(c) (6)
s=O

proves useful for this purpose, enabling us to write

F1(co) = E QW,(C), (7)

where

'WV(@) = AVc&'J+,M(c)

and

A, = [2(v + 1)]1/2.

The complex coefficients Ql,, are nonzero
the index v satisfying

only for values of

v=Ill+2s, s=0,1,2,.
The functions W,(c) exhibit no explicit dependence on 1 and
are orthonormal on [0, ol with weight cc. The functions wl,
= W,(c)exp(ilo) therefore form a complete orthonormal ba-
sis for the Hilbert space defined on the Fourier-transform
plane [0, a] X [0, 27r) having the inner product

(*19 *2) = f27r I: ccdco*1*2*. (9)

We may now more concisely write

(10)qP = 31 Qlpw1 ,,
lv~

where the indices range over the allowable values of 1 and v
and where Q1, = (I, wl,) are the Fourier coefficients, or
moments, of T with respect to the chosen basis 1w1,1.

The minimum significant spatial frequency attained by
an object bounded by the unit disk and exhibiting an lth-
order azimuthal variation (I 5d 0) occurs for structures at the
periphery of the disk and so is of the order of X - I rad per
unit length. The energy in the azimuthal component Fi(w)
up to frequency X for frequencies less than this minimum
frequency becomes vanishingly small as X - 0. As a conse-
quence, the Fourier components F1 are largely decoupled for
sufficiently low spatial frequencies (co ; 1). If the number of
views (i.e., slices in the frequency plane) is sufficient to
satisfy the Nyquist sampling criterion for, say, the lth azi-
muthal harmonic, it would seem that some information
about T may be obtained without significant aliasing con-
tamination from higher-order (' > 1) azimuthal features F1,
when w < 1.

It is remarkable that M2 + M low-order moments Q1, of the
source distribution may be retrieved exactly from M projec-
tions of Af, entirely free of angular aliasing contamination.
This information, as would be expected from the plausibility
argument above, relates to the low-frequency content of the
transform. It is not, however, enough to characterize fully
the transform in this region since by the analyticity of T
exact knowledge of the transform in any region is sufficient
to determine the behavior of T on the complete (w, 0) plane.
Nevertheless the relative contribution from higher-order
components 1' > 1 becomes exceedingly small whenever co < 1,
and this is reflected in the behavior of the basis functions wl,.
Gray-scale contour diagrams for some members of this set
are shown in Fig. 2. Note that the higher v functions are
localized farther from the origin. Before determining the
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Fig. 2. Contours of the real part of the three lowest-order basis
functions wiv(W, 0) for I = 3 and v = 3, 5, 7.

privileged subset of basis functions that can be recovered
from a finite number of views, however, we relate the mo-
ments Qlv of T to corresponding quantities characterizing
the object i and its shadow G.

We first require a result by Born and Wolf'4 that links the
functions Wv(w) to the generalized Hankel transform of
polynomials orthogonal on the unit disk:

j rdrR,,(r)J 1(cor) = (-1) 2 Wv(c). (11)

The functions Rv1 are Zernike polynomials
v-(II

Rv'(r) = Av 3 (-v ) )(v - n)!rv- 2n
n=0 n!(-v+l .n))!(vl -.n)!

and for given I are orthonormal with weight r on [0, 11. In a
similar fashion to Niland and Schmidt-Harms,' 5 we define a
Hilbert space on the unit disk [0, 1] X [0, 27r) having the inner
product

(f 1 ' 2) = J j rdrif' 2 *' (12)

The functions ulv = Rv'(r)exp(i16) are a complete orthonor-
mal basis spanning this space, so that 4, can be expanded as

4, = 3 exp(i10) 3 q,,R,'(r)
I=-a) 

= 3 q1vul, (13)
Iv

where qlv = (if, ulv) are the moments of f with respect to the
basis Jul,). Taking the 1th-order Hankel transform of f1(r)
and using Eq. (11), we compare with Eq. (7) to obtain

Qiv= sIvqlv, (14)

where

alv = 27r(i)

and

so that the moments of 4, are related in a simple way to the
moments Qlv of its transform. The proportionality constant
P1v ensures the appropriate symmetry relations between the
object and its transform. For example, take 'P Hermitian.
Then P*(cc, 4) = T(cc, 0 + 7r), requiring that Q-1v = (-1)lQiv*
so that qlv = qlv,* as is necessary, since 4, must be real.
Since A1v shows no explicit I dependence, however, we hence-
forth simply write -

By taking the inverse Fourier transform of Eq. (2), it can
be verified that with T expanded as in Eq, (10), the shadow
G(t, 4,) can also be expressed as a Fourier series:

G(t, 0) = 3 exp(il4,)g1(t), (15)

where

gl(t) = 3 PlvVv(t) (16)

and

Vv(t) = 2/7(1 - t') 1/2 Uv(t), (17)

where Uv(t) is a Chebyshev polynomial of the second kind of
degree v. The Vv(t) are orthonormal on [-1,1] with weight
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(1 - t2)- 2 so that the functions vl, = Vv(t)exp(ilo) are a

complete orthonormal basis for the projection Hilbert space
[-.1, 1] X [0, 27r) with the inner product

(GC, G2 ) = J 2 I t (18)fo2w _ Vi - t-2

With these definitions we have

G = 3 PIv"v, (19)
I,v

where

Ply = (G, vlU)

= Xvqlv, XV = 2 2w/Av. (20)

Therefore the moments of f(r, 0) and T(c, 0) are related
directly to the moments of the shadow G of f' through Eqs.

(14) and (20). It will be shown that a well-defined set of

moments is still exactly retrievable when only a finite set of

projections {GM(t)} is available.
The reason for the chosen representation of T in terms of

the functions Wv(c) is now evident. The corresponding
expansions for 4 and G in terms of Zernike and weighted

Chebyshev polynomials are those first given by Cormack.10

These polynomials provide a natural pair of bases for the

projection and disk Hilbert spaces in the sense that they

yield the singular value decomposition of the projection op-

erator that maps the object ' onto its shadow G:G = p4'.1
6

Thus

= Pif=3 E(, vXl)G = P~ = Xv Pulv,
I ,v

(21)

so that

PUiv = XAvlv

and the scalars {Xv} are the singular values for recovery of f

from its projections. This representation is often used in

tomography on plasmas where the important features such
as magnetohydrodynamic modes tend to be localized in cc

space and so require only relatively few terms in such a

harmonic expansion of the source function.' 7

In passing, note that if f(r, 0) is real, it can be expanded as

4f(r, 6) = {' alvRv'(r)]cos 10 + [z blvRvl(r)Jsin 10},

where the coefficients are real and are given by

alv = (qlv + q-v),

blv = i(qlv - q-iv), (22)

and the prime indicates that the 1 = 0 term is to be halved.

We shall have cause to refer to the quantities alv and biv

explicitly below.
We now show that a special subset of these Fourier coeffi-

cients, or moments, is immune to angular aliasing contami-
nation and so in principle is exactly retrievable from M-view

tomography. Since the azimuthal part of the Fourier series
expansion of T is known only at the 2M points 14,ml, harmon-
ics no higher than the (M - 1)th order can be determined

fully. The slices in the Fourier plane provided by the pro-
jections will in general be aliased by contributions from
harmonics of order higher than M - 1 so that the functions
Pl(cc) obtained from the projections may not reliably repre-
sent the true components Fl(c). The Pl(cc) can be recovered
from Eq. (4) by using the discrete Fourier transform on the
set of 2M sampled values of ':

2M-1

pFi(cc) = 2M 3 exp(-il,)'T(co, (,m).

m=0

On substitution for T from Eq. (4) it follows that

(23)p1 = F, + 3 (FI+2 Mj + Fl-2M)
j=1

where the sum over j represents the infinite set of aliases of 1.

The superscript ^ is hereafter used to designate quantities
that are recovered from a finite number of views and are so

subject to aliasing contamination. By substituting for the Fl
from Eq. (7) and using the orthogonality of the functions
Wv(c), we produce

(24)Qkv = Qlv + ±3 (Q1+2Mjv + QI-2Mj,v)'
J.

where j is such that v = Ill + 2s = II ± 2Mjl + 2s' for some
integer s' > 0. Note that the contaminating quantities must
have the same index v as the recovered term.

The important result is that

Qlv = Qlvs Ill = 0, 1, . . . , M -1,

v = 1l, Ill + 2,... ,2M-Ill-2, (25)

so that M equispaced views of an object yield M 2 real quanti-
ties al. and blv that are free from azimuthal aliasing contami-

nation. The result follows from Eq. (24) and the fact that
the coefficients Qlv are zero when v as Ill + 2s for any positive
integer s. This is the result first obtained by Niland. For
notational ease, we denote this special set of coefficients by

{CM}.
Note, however, that Eq. (24) also admits another set of

recoverable quantities, namely,

QMv = 0-Mv = QMv + Q-Mv

= PvaMv, v = M, M + 2, ... ,3M - 2. (26)

By contrast, the bMv coefficients remain invisible for the

chosen M-view geometry. In the Fourier-space representa-
tion (Fig. 2), the slices in the frequency plane coincide with
the zero lines for the bmv basis functions and so provide no
information. Hereafter we denote this extra set of real
numbers by {cM} and the complete set of M2 + M alias-free
real numbers by ISMI = {CM} U 1CM}.

Since the bMv are unknown, a reconstruction that includes
the extra set of M retrievable moments aM, will be necessar-
ily nonuniform. Nevertheless the availability of such un-
tainted information may be of considerable significance, de-

pending on the shape and orientation of the important fea-
tures of the tomographic object. This is especially true for
the tokamak plasma application of interest here, where, for
example, rotating (1 = 2)-type features would be revealed by

the two-view system as periodic variations in the amplitude

John Howard



1004 J. Opt. Soc. Am. A/Vol. 5, No. 7/July 1988

U4. A,;

Q00 - QO2 - o4 -Qo6 Q08 Qo,10

Q, \ QY13 Q15 Q17 Qis

Q22 I Q24 Q26 Q28 Q2,10

Q33-----Q
3 5 -J Q37 Q39

\Q., Q46 -Q48 Q4,10

Q55 Q57 Q59

Q66 QCs Qo,10

Q77 Q79

Q88 Q8s,0

Q99

QiolIO

Fig. 3. Q table and the sets ISMI, $UMI, and fAMI for (M = 4)-view
tomography.

of aMy at twice the rotation frequency of the 1 = 2 mode.
Some measure of radial information is also obtained, since
both c22 and a24 are retrievable when M = 2. When the
plasma cross section is noncircular, two views are sufficient
to yield the plasma elongation in the direction parallel to one
of the views.

As an aid to visualizing the set of coefficients {SMI, they are
displayed in tabular form in Fig. 3. For convenience, the
case M = 4 has been chosen to demonstrate some of the
properties of the Q table,9 and attention is restricted to the
moments for which I > 0. Only the nonzero coefficients
lying upon and above the diagonal boundary v = 1 are shown.
The members of the moment set {SM} are linked by solid
lines. Elements upon and inside the first and second dashed
lines in the table constitute the special sets {UM} and {AMI
described in Section 3. It becomes clear, when presented in
this format, why the set ISMI is privileged. The possible
aliases for the moments having 1 < M are those quantities
(having the same value of v) that when folded about the
position I = M coincide with, and so corrupt, the desired
term. There remains a triangular portion of the table,
which, because of the nullity of terms below the diagonal, is
entirely free of this effect. As already noted, the terms
obtained for I = M yield only the real part of the true
coefficients and, when v is sufficiently large, are themselves
finally tainted by nonzero negative I terms.

It is appropriate at this point to note that the low-order
moments obtained by two-view tomography on a plasma, for
example, can be related in a simple fashion to physically
more intuitive quantities. We first define the generalized
moments by

ulk = J d J rdrrk exp(-i16)4

=/2(alk + iflB1 )- (27)

The average electron density ne in the chosen cross section is
therefore given directly from the lowest-order generalized
moment of the electron density distribution. Similarly we

may write for the center of mass (xe, Yc) = (all/2yoo,
-011/2poo) and for the mean square deviation from the cen-
ter of mass a2 = /02//IOO - (X.2

+ yc
2

). The extra privileged
term a2 2 taken together with JU02 permits separate determi-
nation of the mean square deviations aX2 and oY2, giving a
measure of the elongation of the plasma distribution in a
direction parallel to one of the views. These quantities,
which can also be written in terms of the unaliased al. and biv
in a simple way, have been explicitly calculated for the two-
view interferometer data and provide considerable insight
into the physical processes determining the plasma behav-
ior.8 In passing, we note that a system using only a single
view unambiguously yields both ao0 , the area under the pro-
jection or equivalently the total mass of the object 4' on the
unit disk, and all, which is proportional to the displacement
of the center of mass of 4' transverse to the direction of view.

3. SAMPLING CONSIDERATIONS

The results obtained in Section 2 assume that the views
Gm(t) are complete. In this ideal circumstance, the collec-
tion of M2 + M real numbers {SM} is the most that can be
asserted from the data in the absence of other knowledge.
In practice, however, the F1 provided by M views are usually
known at only a finite set of points [as would be yielded, e.g.,
by a fast Fourier transform (FFT) of the projection data] so
that the Q1v are subject to radial aliasing contamination and
can no longer be exactly determined. Without some sort of
a priori knowledge about the object, such as the maximum
significant spatial frequencies that are likely to occur, little
can be extracted with confidence from a finite data set.

Fortunately many physical objects are effectively band
limited in the sense that the power contained in the spec-
trum above some cutoff frequency wco is negligibly small.
Equivalently, it may be that it is the measuring system itself
that sets the effective system bandwidth cc,. This is the case
for the two-view plasma interferometer, in which the optical
system forms an image that is band limited by diffraction
and is sampled at the Nyquist frequency by an image plane
detector array. It is of crucial importance therefore to as-
certain the number of views M and samples per view N
required to characterize an object that is effectively band
limited. The informal Fourier-space argument presented
below (see also Refs. 11 and 18) yields the answer in a simple
way.

Assume that lP(co, 4) is small for co > co0. Let ,6 be such an
object of effective bandwidth w0. By the projection theo-
rem, the Gm are also effectively band limited and so can be
approximately recovered from a finite number N of samples
of Gm that are equispaced by 7r/wo on the interval [-1, 1].
Such a sampling would be free from aliasing contamination
to the extent that neglect of higher-frequency components
than w0 is valid. A discrete Fourier transform performed on
the sampled projection will yield values of the transform T
at N equispaced points separated by Aco = 2cco/N = 7r rad per
unit length along a cut through the origin. Since the object
is confined to the unit circle, the transform T contains no
component corrugations having more than a single cycle per
unit length in the (c, 0) plane. Consequently the number of
equispaced views (or cuts) needed to specify uniquely the
two-dimensional transform to the same bandwidth coo is
fixed by the Nyquist condition that the distance between
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points in the plane not exceed An. This yields the approxi-
mate relation M - (7r/2)N, so that the total number of
measurements required to recover 4 is MN -(2/wr)cc2. Evi-

dently, since N = (2/7r)co, the number of equispaced com-
plete views sufficient to recover the spectrum of an object

effectively band limited to coo is M = coo. This is consistent

with the simple-minded argument following Eq. (10), which

suggests that circular frequencies at least up to cc - M rad
per unit length should be resolvable without aliasing ambi-
guity from M complete views.

Below we briefly discuss retrieval of reliable information
from discretely sampled projections. First, however, we ex-

amine the question of image uniformity and show that a
well-defined subset JUMl of the reliable coefficients ISMI is

useful for producing an image that is resolved more uniform-
ly than a reconstruction based on the full set ISMI.

A. Image Uniformity and Reconstruction Bandwidth
Given M complete views of an arbitrary object, we ask to

what extent the numbers ISMI permit reconstruction of an
undistorted image of the object. In other words, what is the

correspondence between the object spectrum and the privi-
leged moment set discussed in Section 2? To resolve this
question we examine the finite dimensional subspace S of
the unit disk Hilbert space that is spanned by the basis
functions corresponding to the collection of unspoiled mo-
ments provided by M views of the object. The projection
onto S of the delta function ((0 - 00)5(r - ro)/r,

hs(r, 0; ro, 0o) = 3 ulv*(ro, 00 )u 1y(r, 0)/27r, (28)

ISMI

where the uly are members of the set spanning S, is a measure
of the response of this subspace to an impulsive source. It is

easy to show' 5 that h, is the unique function in S having the

same moments as the delta-function source and hence is the
most compact function in the disk Hilbert space that match-
es the reliable moments. Alternatively hs is Green's func-
tion for the linear operator that maps an object onto its
reconstruction in this minimum norm sense, so that the
reconstruction Os of an arbitrary function 4 from its reliable
moment set [SMI is given by

SQ, 0) = JJ rdrd6hs(Q, ,; r, 6)4(r, 6). (29)

The Green function may be interpreted as the point-spread
function for reconstruction in the (M2 + M)-dimensional
subspace S. Explicit calculations show that hs is not spa-
tially invariant on the unit disk but has contours that are
approximately elliptical with eccentricity a function of ro
(for the first M2 moments only15). When the additional M
moments in the set {cM} are included, hs also depends on 00.

This is an undesirable situation, since features of a given
dimension will be reconstructed with varying resolution at
different points on the disk. We thus seek a subspace U of S
that will capture 4 in a more uniform fashion. Uniform in

this sense means that the tomography system act as an ideal
low-pass filter, with cutoff determined by the number of
views. In such circumstances the Green function hu(r, 0; 0,

0) would take the familiar Airy form and be position invari-
ant. However, unless M - , the point-spread function hu
for reconstruction in U can never be truly position invariant

1.0- 0

Ev

3 30

0-
0 20 4 0 60

w radians/unit length

Fig. 4. Energy Ey contained in the vth basis function Wy(W, c/)

below frequency cc for v 0-30.

because of distortion at the boundary of the unit disk. We
therefore relax the criterion for uniformity by seeking a
subspace U that is sufficient to transmit the object spectrum
accurately up to some maximum frequency determined by
the number of views. In other words, we discard those
functions that are not necessary to ensure that 'P is recov-
ered up to this cutoff, since it is the higher-frequency infor-
mation that distorts the reconstructed image. Since the
Mth-harmonic terms clearly do not belong to this space U,
we hereafter consider only the subspace C of S spanned by
the M2 functions corresponding to the coefficients constitut-
ing the set {CM}.

Now consider Eq. (10) for the object spectrum '. The
energy Ey(cc) contained in the basis functions W. below cir-
cular frequency co can be easily calculated as

=

E,(wE) = jo2(Wo) + jV+12(CO) + 2 E jk 2 (,)
h=1

(30)

and is shown plotted in Fig. 4 for even values of the index
between v = 0 and v = 30 and for cc up to a maximum of 60 rad
per unit length. The maximum radial order v that is ob-
tained by all angular components in the expansion (10) is
Vmax = 1max = M - 1. From Fig. 4, inclusion of all functions
up to and including v = vmax in the reconstruction ensures
that the spectrum is reliably recovered up to a limiting fre-
quency cc Vmax = M - 1. The elements having v > Pma, are
not available for all the angular harmonics and so distort the
image and are discarded. It is therefore the (M2 + M)/2
functions in C having v < Vmax that span the space U, and we
denote by IUMI the subset of corresponding coefficients in
ICM}. For example, the elements on and to the left of the
first dashed line in Fig. 3 constitute the set 1U41. It follows
that the maximum number of views necessary to resolve
fully an object of effective bandwidth c 2 without aliasing
contamination is M = 1max + 1 = Vmax + 1, where Vmax is such
that

(31)3 1(l>m2a

V> vmax
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where the quantity e is a measure defining the degree to
which 4 is effectively band limited.

For general objects, reconstruction in the space U is gov-

erned by the properties of the point-spread function on the
unit disk. Figure 5 compares the point-spread functions hu
and hs for ro = 0 and ro = 0.5 when M = 16. The greater

uniformity displayed by hu is obviously achieved at the
expense of spatial resolution. Even so, hu also necessarily
distorts near the edge of the disk where the high v moments
dominate. A measure of the increased distortion of hs com-
pared with hu as ro increases is the percentage of total power
represented by the v > Pmax moments. This is given by the
ratio

and, for moderate M (>10), is found to increase in an almost
linear fashion from a minimum of 0.25 at ro = 0 to -0.6 at the
edge of the disk.

The transmission properties of the tomographic system
are perhaps better illustrated by observing how reliably the
recovered spectrum Hc(c, 4; ro, 00) of the object 6(0 - o0 )b(r

- ro)/r represents the flat spectrum of the delta-function
source. The frequency-space behavior of hc is described
simply, using Eqs. (10), (14), and (28), as

Hc(cc, 4; ro, 6o) = 3 (-i)vuy*(ro, 0o)w1y(c, 0). (32)

In Fig. 6 the magnitudes of the transmitted spectra, IHuI and
IHcI, are plotted along lines 0 = 0° and 4 = 90° for an (M =

16)-view system. The disparity of the response IHCI in the
orthogonal directions u and v becomes increasingly signifi-
cant with increasing ro. On the other hand, the uniformity
of the response IHUI suffers only marginally as the impulsive
source moves to the edge of the disk.

The trade-off between image uniformity and spatial reso-
lution must be determined by the requirements of the appli-
cation at hand. However, two further points should also be
considered. First, note that the cutoff condition for a uni-
form reconstruction is equivalent to a cutoff in the spectrum
of moments such that v = Ill + 2s < Vmax. Consequently
inclusion of functions for which v > vmax, in addition to giving
rise to extra distortion in the image 4s, will also result in
greater noise amplification since the singular values Xv for

recovery of the functions uly from the projection data de-
crease as v increases [cf Eq. (21)]. Furthermore, as shown

below, when only a discrete set of samples of the projections
is available, the coefficients for the functions in U are less
susceptible to aliasing contamination and so more likely to
yield a reconstruction free of serious artifacts.

B. Aliasing and Discretely Sampled Projections
In practice, the M projections are never complete, so that in
general the approximations to the privileged moments de-
rived from discretely sampled projections are no longer
strictly immune to aliasing contamination. Below we exam-
ine what can be asserted for objects that are effectively band
limited and explicitly identify the aliasing contaminants for
given object bandwidths and viewing geometries.

For now, take M - coo, so that M complete projections are
sufficient to capture the highest-frequency structures fea-

tured in the effectively band-limited object 6. Noting that
the orthogonal expansion for the harmonic coefficients gl(t)
can, with the change of variable t = -cos r, be alternatively
expressed as a sine series:

gl(,) = (-1)' 27w X Ply sin[(v + 1)r], (33)

we take the projection as sampled at the set of N positions
specified by

1{rn Tn = nTr/N, n =1, 2, ... }

This particular disposition of rays offers a convenient and
natural framework for extraction of the possibly aliased mo-
ments by using Fourier techniques. With this arrangement
the available data are sufficient to determine a maximum of
N - 1 possibly aliased quantities through the inverse dis-
crete sine transform:

Ply = (-1)' N gl(rn)sin[(v + 1) - (34)

The extracted fiy are simply all those for which v < N - 2 SO
that recovery of the set {0M} requires N > 2M (here again the
superscript' denotes possibly alias-tainted quantities). In
fact {0M} forms a subset of the complete set JAM} of coeffi-
cients recoverable in this case. The set {AM}, as indicated in

Fig. 3 for M = 4, consists of those terms for which 1 < M - 1

and v < N - 2 = 2M - 2. Below we examine the point-
spread function for reconstruction in the space A spanned by
the functions corresponding to the possibly contaminated
set {AM}. Substituting Eq. (33) for gl(r) identifies the aliases
as

(35)PlV = PlV + 3 PAx - E PI,,
X 1

where

X + 1 = 2Nj + (v + 1), j 1, 2,...

and

u + 1 = 2Nk - (v + 1), k 1, 2,

The lowest alias for the vth moment is from the term bt = 2N
- v - 2. For an object of effective bandwidth wo, we may
neglect aliases from functions for which v > Vmax so that the
number of noise-free samples sufficient to recover the Ply is
given by the condition ,u = V = Vmax + 2 so that N = Vmax + 2 =
M + 1. The total number of samples in the projection set is
then MN = M2 + M, which is simply twice the number of
extractable functions for an object that is band limited to coo.

When M < wo the collection of M2 moments ICM} can still
be recovered without contamination from discretely sam-
pled projections, provided that 2M - 2 < (2N - Pmax - 4).
Here vmax is given by condition (31) and 2M - 2 represents
the maximum v value attained by any member of the set

{CMI.
In the general case, the extracted coefficient can be explic-

itly related to the true quantity and its set of contaminants
by using Eqs. (14), (20), (24), and (34):
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q,, = (llv + X v (l,2Nj+v - X2Nkv 2 -2
= y Xy l,2Nk-v-2

i= 1~ j~ A (l i+2Mi,2Nj+v

- 2kE 2 ,\ 12Mi,2Nk-v-2} (36)
k=1 v

The upper-index imax is fixed by the condition 1 1 2Mjmaxl •
v. When the qlv are restricted to lie within the set tSM}, only
the radial aliases survive. It is clear that the extra band-
width obtained by retaining all the moments extractable
from, say, N = 2M samples per view (i.e., the set {AM}) is
acquired only at the risk of increased azimuthal aliasing
contamination. However, it is significant that the higher
the order v of the contaminant, the less strongly it is coupled
to the desired quantity.

The effects of aliasing on image reconstruction can be
assessed by examining the properties of the point-spread
function hA calculated from the contaminated members liv
of the set {AMI at various positions on the unit disk and under
different sampling conditions M and N. Without loss of

(a) (b)

(d) (e)

generality, we may take 60 = 0 so that the expression equiva-
lent to Eq. (28) for the contaminated point spread is

hA(r, 6) = 3 41iu1y(r, 0)/27r,
JAAf

where liv is given by Eq. (36) and the contaminating ele-
ments are simply qlv = ulv*(ro, 0) = R, 1(ro).

Figures 7(a)-7(c) show the calculated point response hA
for rO = 0.8 with M = 32 and N = 64. The azimuthal and
radial aliases can be examined separately by, in the first
case, allowing only the sum over j = 0 to contribute to the
calculated terms clv, and in the second case, by setting imax =
0. This is equivalent to letting N and M, respectively, be-
come infinitely large. The results are depicted in Figs. 7(a)
and 7(b). For the radial aliases the sums over j and k were
truncated above j = k = 10, corresponding to a maximum
order v = 1342 contributing to hA. Inclusion of more terms
produced little discernible change in the resulting image. In
Fig. 7(c) all allowable radial and azimuthal aliases are com-
bined. The gray-scale images have been clipped at A10% of
the peak height to highlight the aliasing artifacts. In Figs.
7(d)-7(f) similar calculations have been performed for the
point source at rO = 0.3. Observe that finite M artifacts are

(C)
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Fig. 7. Point response hA calculated using the aliased coefficients cliv (M= 32, N =64) for functions in the space A. The point source is located
at ro= 0.8 for (a)-(c) and at r = 0.3 for (d)-(f). For the leftmost image in each case only azimuthal contaminants are included. The middle im-
ages show the effects of radial aliasing contamination alone, while the rightmost images include all azimuthal and radial aliases (up to order] =
k = 10).
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more pronounced for objects near the edge of the disk but
that the effects of undersampling within a view appear to be

the more damaging. The streaking and oscillatory struc-
tures apparent in these images are clearly reproduced in
reconstructions of synthetic test objects described in Section

C. Band-Limited Projections
We now consider the case in which the effective band limit
for the projections is fixed by the measuring apparatus. For
example, because of diffraction, the optical system used for
the phase-imaging interferometer acts as an ideal low-pass
filter with cutoff frequency co - 30 rad per unit length. In
this case the required sampling rate within a view is fixed by
cc,, the system bandwidth, rather than by wo. To capture
exactly the image of the band-limited projection Gm, we
need to sample at the Nyquist rate across the full spatial
extent (-a, a) of the image plane. Given such a sampling
we wish to ascertain that information that can be recovered
reliably from the projections. As described before, a dis-
crete i-fold harmonic analysis over the angles em yields the
true band-limited projection component gl and its set of
aliases:

ii(t) = 9 1 (t) + 3 gj12Mj(t). (37)

Equation (16) is not appropriate for the g, so that the coeffi-

cients Ply cannot be related so simply to the measured quan-
tities Plb. In principle it is nonetheless possible to restore g1
from its band-limited counterpart, given the knowledge that
the original object and thus its shadow are spatially bound-
ed.' 2 This is facilitated by introducing functions Uk(t), the
prolate spheroidal wave functions, which satisfy the integral
equation

1 sin[co,(t 7- )/2wr]
Jdrrk(r) w dt-r) = )

I- 1 7 r(t-T

where da are the corresponding eigenvalues and possess the
useful property of orthogonality on both the intervals [-1, 1]
and (-c, a):

| dtok(t)aj(t) = bkjx

1J dtak(t)Oaj(t) = dkhk

Exploiting these properties enables us to write

g1(t) = dk k (t) (38)

91 = 3 clkak(t), (39)
k=O

with the coefficients obtained by forming the appropriate
inner product with the expansion eigenfunctions. Substi-
tuting Eq. (39) for gl into Eq. (37) yields

CIk = CMi + 3 Cl±2Mj,k- (40)
1='

The moments Piy may therefore be recovered in terms of the
clk by using Eqs. (16) and (38) for gi(t):

(41)Ply = 3 Clkpkv,
k=O

where we have taken

Pkv = -_1 f dtOk (t) Uv(t).dk 7r-i1

The quantities Pkv and dk can be explicitly computed. Sub-
stituting from Eq. (40) into Eq. (41) confirms that the un-
tainted set ISM} can, at least in principle, be recovered from
M band-limited views of the object. This is of course simply
a restatement of the fact that gl can be recovered from gl
given the knowledge that 4' is spatially bounded.

Any physically realizable apparatus will in practice yield
only a finite set of samples of the band-limited projections

,GmJ. In addition, these measurements will inevitably be
corrupted by noise. For example, the two-dimensional in-
terferometer provides 20 detector channels per view, which
sample at approximately the Nyquist frequency within the
most intense portion of the image of the plasma cross sec-
tion. In this case estimates of the coefficients are reliable
only to the extent that energy in the unsampled part of the
image can be ignored. Equivalently, the error in the evalua-
tion of the moments incurred by fitting the band-limited
data to the basis functions Vy(t) on the finite interval [-1, 1]
will be small, provided that v is sufficiently small compared
with the system bandwidth wc-. The fraction of energy con-
tained in the interval [-1, 1] for gl(t) can be shown to be

(3dkCik2)(3clk)

It is simpler, however, to note that the energy contained in
the two-dimensional spectrum wli(cc, 0) of the basis func-
tions uli(r, 6) above the cutoff cc, is simply the quantity 1 -
Ev(wcc), with Ey(c) given by Eq. (30j. As a first estimate, 1 -
Ey will be representative of the energy residing outside the
finite interval [-1, 1] for the band-limited projection basis
function V>(t). From Fig. 4, observe that for the omitted
energy at cs = 30 rad per unit length to not exceed 10%, the
recovered moments should be restricted so that v < 4.

4. IMAGE RECONSTRUCTION

A. Extraction of the Moments
With each of the M projections composed of N samples
equispaced in angle 1-, a discrete harmonic analysis over the
first M angles {o,, yields the coefficients Rg(Tr) for n = 1,
2, . N. In turn, the moments PbI can be extracted ac-
cording to Eq. (34), with the complete process being effi-
ciently implemented on a computer using two-dimensional
FFT techniques. When not all the available moments are
required, some level of noise reduction may be achieved by
performing FFT's on selected subsets of the N data points
and averaging to obtain a better estimate of the spectrum
{Pl>1. Of course, the reduction in noise will necessarily occur
at the expense of bandwidth and a possible increase in alias-
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ing contamination. For small to moderate values of N, the
spectrum is more often extracted by fitting to the basis
functions using general linear least-squares techniques.

It is instructive to evaluate explicitly the Fourier coeffi-
cients g1(t) for the M = 2 interferometer geometry. From
the band-limited views Go and C1 we generate the four sets
of Fourier coefficients Go + C, (1 = 0), Go ± iG, (1 = ±1), and
Go - C1 (I = ±2). For the moderate bandwidth of the
imaging interferometer, it is a good approximation to take Vy
= Vy (at least for the functions in S) and so fit to the simpler
weighted Chebyshev polynomials. With N = 20 points per
view, it is clear that the moments {SAP will be strongly deter-
mined by a least-squares fit of the functions Vy to the mea-
sured data.

B. Image Reconstruction and Two-View Plasma
Interferometry
Given this finite number of what we hope are relatively pure
quantities extracted from the projections, we desire to create
an image of the source function. However, for a two-view
system, though the moments are intrinsically of value, they
provide only M2 + M = 6 constraints on the reconstructed
image of the plasma density distribution. Clearly one could
simply use these numbers as coefficients in a minimum norm
or Cormack reconstruction of 4' on the unit disk. However,
such an approach does not utilize the extra information that
is available. First, the reconstructed density distribution
must be everywhere positive, and second, there can be no
plasma outside the square vacuum vessel walls. It is there-
fore desirable to reconstruct a function that is confined with-
in a square (circumscribed by the unit disk), is positive, and
matches the known moments. An attractive approach is to
construct a function that maximizes the entropyl9 "20

S = - Ef' In

of 4' (suitably discretized on a square pixel grid) while satis-
fying the set of constraints derived from the projection data.
Nevertheless an image constrained by at most six numbers
will convey limited information.

The constraint set can be significantly augmented if one
makes the assumption that the object (in this case the plas-
ma) possesses no harmonic content higher than 1 = 2. Such
an assumption may be supported, for example, by signals
obtained from other diagnostics, such as x-ray detector ar-
rays, or theoretical estimates of the plasma shape. The full
set of 1 = 0 and 1 = 1 moments and half of the 1 = 2 moments
are then in principle retrievable, though a practical upper
limit is set by the instrument bandwidth and by the presence
of noise on the measured line integrals. It is also required
that the center of the plasma and the center of the unit disk
coincide so that spurious multipole moments of the assumed
low-order I = 0 and I = 1 features are not generated. A
discussion of the range and validity of such assumptions, the
effects of noise, and maximum-entropy reconstruction of the
interferometer data is deferred to a later publication.

C. Fourier Techniques for Image Reconstruction
The implementation of the maximum-entropy reconstruc-
tion technique can become prohibitively expensive when a
large number of coefficients are available. In such cases it is

more reasonable to evaluate explicitly the basis functions Ulv
on a polar grid by using the appropriate recurrence relation
for the Zernike polynomials' 0 followed by a FFT generation
of the angular factors. Although such an approach can be
made highly efficient (especially if the radial terms are pre-
tabulated), the resulting reconstruction will exhibit the ring-
ing artifacts normally associated with polynomial expan-
sions [see Fig. 11(b)] while also suffering from the (possible)
inconvenience of having to be displayed in polar fashion.
Direct evaluation on a Cartesian grid is undesirable because
of the necessity of having to calculate basis functions for
each value of l and v at each grid point.

An alternative approach is first to calculate the transform
'I of the image on a Cartesian mesh (ui, vi) using the orthogo-
nal expansions developed in Section 2 and invert this using
standard two-dimensional FFT techniques to obtain 4.
This approach has the attraction of permitting frequency-
space manipulation of the image before the final reconstruc-
tion is produced. One is also free to choose the coefficient
subset for image reconstruction, thereby either maximizing
uniformity or resolution or reducing the risk of aliasing con-
tamination and/or noise corruption. It is instructive to re-
arrange Eqs. (4) and (7) into the form

'P(cc, 4) = 2w 3 Wy(cc)(-i)" 3 '(a,, cos 10 + bly sin 10).
v osisv

(42)

In a given application it is necessary to calculate the requi-
site functions only once for the chosen grid configuration
and store these values in an appropriate array or look-up
table. In particular, the Bessel functions Wy(wi) can be
computed accurately for all orders by means of the recur-
rence

Jy(c) + Jy4 2(cc) = AyWy(cc),

and, being explicitly independent of 1, need only be calculat-
ed to the highest required value of v. In addition, for a 2K X
2K uniform mesh in the (u, v) plane, only (K2 + K)/2 of the
grid points have distinct wi values, while the Hermitian
properties of the transform necessitate explicit calculation
for only one half of the plane. Nevertheless, calculation of
the transform is computer intensive and limits the size of the
reconstruction grid to 2K - 128 for moderate computational
cost (CPU times - 10 min on a VAX 780 computer for M =
64 and N = 128).

A reconstruction algorithm using these ideas has been
implemented as described below for reconstruction of vari-
ous synthetic source functions. Crawford and Kak2l have
chosen an ellipse phantom for the demonstration of aliasing
artifacts due to incomplete radial and azimuthal sampling of
the shadow G. Figure 8 shows gray-scale contour plots of
the same test ellipse phantom and its reconstruction from 64
views (equispaced in 0) comprising 128 samples per view
(equispaced in -) for various subsets of the extracted Fourier
coefficients. The chosen spacing of grid points in the trans-
form plane (2K = 128, Ax = 7) ensures adequate sampling of
the transform out to the circular cutoff frequency wo - M rad
per unit length. The images have been clipped (following
Ref. 21) at ±10% of the ellipse height to emphasize the
aliasing streaks and other artifacts, while the display grid
size matches the number of reconstructed pixels. Figure
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Fig. 8. Reconstructions of atest ellipse phantom for various subsets of the Fourier coefficients extracted from the projections. See text for de-

tails.

8(a) shows the reconstruction of the phantom using all the

coefficients extracted from the projections (the set 1A64}).

The strong streaking is primarily the result of an insufficient
number of samples per view. By retaining only those func-

tions immune to angular aliasing (the set IC64), the severity

of the streaking is marginally reduced [Fig. 8(b)]. However,
when only those terms for which v < Vmax = M - 1 are used

(the set IU 64}), the resulting image is largely free of such

artifacts [Fig. 8(c)] and closely resembles the ideal band-
limited reconstruction for a cutoff at coo = M = 64 rad per
unit length [Fig. 8(d)].

Location of an ellipse phantom close to the edge of the

disk results in marked distortion of the reconstruction when

all the available moments extracted for M = 32 and N = 64

are used to produce the image [Fig. 9(a)]. Finite M artifacts
are much more prominent in this case, so that restriction to

the set {C32} results in a substantial improvement in image
quality [Fig. 9(b)]. As exhibited in Fig. 9(c), however, the

degree of uniformity is greatest when only those functions

spanning the space U are used for the reconstruction, as can

be seen by comparison with the band-limited (coo = 32 rad

per unit length) ellipse phantom shown in Fig. 9(d).
The level of image degradation when the line integrals are

corrupted by noise is also significantly reduced when only

the functions in U are used to produce the image. Figures

10(a) and 10(b) compare the reconstructions obtained from
corrupted projections of the centered ellipse phantom for
the sets WC641 and IU 641, respectively. The standard devi-
ation of the normally distributed noise is chosen as 1% of the
maximum line integral. The quality of the two reconstruc-
tions can be compared by using the measure

'I2

bE[R(i, j) {(i j) Al

\E[4'(t j) - 4av]' /Wi P-~aj

where kR is the reconstruction and 'av is the mean of the
original phantom 4'. The values of a for these two images

are 0.321 and 0.315, respectively. The greater susceptibility
to noise and aliasing artifacts in this case apparently out-

weighs the advantages of increased bandwidth afforded by
reconstruction using all the available coefficients.

Finally, to confirm that the object structure is indeed
reliably transmitted by the tomographic system up to band-
width co - M, we show reconstructions of the Shepp-Lo-
gan22 "head phantom" with and without the use of tapered
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Fig. 9. Reconstructions of a test ellipse phantom near the edge of the unit disk forM = 32 and N = 64. Note the distortion of the image in (a)
when all the available Fourier coefficients IA32 1 are used to produce the image. In (b) and (c) the sets {C321 and IU3 2}, respectively, are used for
the reconstructed image. For comparison the band-limited phantom (X0 = 32 rad per unit length) is shown in (d).
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Fig. 10. Reconstructions of the ellipse phantom of Fig. 8 when the projections are corrupted with noise.
functions in the spaces C and U, respectively.

(a), (b) Reconstructions using the

(b)
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Fig. 11. Reconstructions of the Shepp-Logan head phantom. (a) Shows the input function, while (b) shows its unfiltered reconstruction

using the basis functions in U. (c) Reconstruction after application of a tapered window before inversion. For comparison (d) shows a

similarly filtered version of the test function.

windows for smoothing of the final image. For these recon-

structions a grid of dimension 2K = 256 was used. The

resulting images were clipped at the maximum and mini-
mum levels of the features interior to the phantom. Figure
11(a) depicts the input function, while Fig. 11(b) shows its

reconstruction from 100 views and 128 samples per view

using the Zernike polynomials corresponding to the space U.

The image of Fig. 11(b) is essentially identical to that ob-

tained using the Fourier representation on the two-dimen-
sional grid. In Fig. 11(c) the reconstructed spectrum was

passed through a Hanning window with a cutoff at wo = 100

rad per unit length before inversion; the result can be com-

pared with the input function similarly filtered [Fig. 11(d)].

5. CONCLUSION

This paper was motivated by the need to recover reliable

information from the two-view interferometer installed for
measurement of the electron density distribution in the
UCLA Microtor tokamak plasma. Some of the results of

Cormack,' 0 Klug and Crowther,"1 and Niland 9 have been

extended and tied together in this work. Specifically it has
been shown that M complete equispaced projections of an
unknown object yield M2 + M real numbers, free of angular

aliasing contamination, that characterize the object. These
numbers are the generalized moments of the source function
and also correspond to a well-defined subset of the expan-
sion coefficients for an orthogonal polynomial representa-
tion of the source and its projections. For small M configu-
rations, such as the interferometer, the availability of the
extra M terms associated with the Mth azimuthal harmonic
in the expansion is especially significant.

The frequency-plane properties of the space spanned by
the functions immune to aliasing contamination have been
examined. It is demonstrated that a special subset I UMI of
the privileged moment set ISMI, comprising those members
for which v < Vmax, can be used to create an image of the
source function that is more nearly uniform (free of distor-
tion) and less susceptible to noise artifacts than an image
constructed from the full set of M2 + M unaliased functions.
These functions are also less susceptible to radial aliasing
contamination when the projections are discretely sampled.
The contaminants in the case of discretely sampled projec-
tions are explicitly identified.
. 'Finally, a reconstruction algorithm based on the frequen-
cy-plane representation of the source function has been im-
plemented and tested for various artificial objects. The
reconstructions obtained illustrate the trade-off among the

(b)
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conflicting requirements of image resolution, uniformity,
noise immunity, and freedom from aliasing artifacts.
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