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Abstract-A scalar diffraction treatment of farwadangle laser scattering diagnostics (e.g. scintillation 
interferometry, far-forward scattering) is presented. Results obtained by other workers for Gaussian beam 

(imaging) and Far-field (focal plane) experimental configurations. Essential elements of the theory have 
been confirmed by near-field experimental measurements on airborne ultrasound. 
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1. I N T R O D U C T I O N  
LINE-OF-SIGHT MEASUREMENT of the plasma refractive index (forward-angle scattering, 
interferometry, shadowgraphy etc.) is a powerful diagnostic for both the short-scale 
random components of the plasma density distribution as well as the long-wavelength 
coherent structures (e.g. JACOBSON, 1982; YOUNG et  al., 1984; HOWARD et al., 1987; 
NAZIKIAN and SHARP, 1987; KIM et al., 1988; WEISEN et al., 1988). In this work, an 
analysis of the diffraction of a Gaussian laser beam from a weakly perturbing, but 
otherwise arbitrary refractive index distribution, valid throughout the diffraction 
region is presented. The implications for interferometric and small-angle scattering 

field small-angle description of scattering from waves given by EVANS et al. (1982) is 
generalized to arbitrary refractive structures, reducing to the Evans expressions for 
harmonic disturbances. The work, however, highlights the properties of near-field 
techniques which have the advantage of conveying the transverse spectral features of 
the medium with little or no distortion. In addition, measurements in the Fresnel 
region allow some line-of-sight resolution of the scattering source distribution. Exper- 
imental scintillation measurements confirming these expectations are reported here. 

Section 2 reviews the relevant aspects of scalar electromagnetic diffraction theory 
introducing both Rytov and Born perturbation solutions to the wave equation for 
weakly fluctuating media. Our starting point is the drflracthn projecfiun theorem 
(WOLF, 1969), which is the wavenumber domain solution to the scalar inhomogeneous 
wave equation in the Born approximation. It is the Rytov approach (e.g. STROHBEHN, 
1968), however, that proves the more natural framework for the analysis offonvard- 
angle, scattering techniques. An expression for the perturbed complex Rytou phase 
for the ideal case of plane-wave illumination is obtained, and shown to transform 
simply (in the paraxial approximation) under the action of a collecting optic. The 
theory is readily extended to Gaussian beams in Section 3 to yield a general expression 
for laser-beam scattering from an arbitrary medium in the region beyond the plasma, 
with or without a thin collecting optic. In Section 4, it is shown that the signals 
obtained using optical mixingdetection (e.g. heterodynedetection) are related linearly 
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to the perturbed Rytov phase. Limiting expressions for the far-field (focal plane) and 
near-field (imaging) detector signals are then derived in Sections 5 and 6. Finally, in 
Section I, we report near- and intermediate-field interferometry experiments on air- 
borne ultrasound that support the theoretical results. It is demonstrated that a thin 
coherent disturbance can be localized from near-field measurements of the complex 
Rytov phase. 

2 .  S C A L A R  DiFFRACTiON THEORY 
We consider propagation in the z direction of a monochromatic wave (U(, = ck,,, 

k,, = 2n/i.”) of arbitrary spatial distribution through an inhomogeneous, weakly per- 
turbing plasma. The coordinate origin (incident plane) is chosen so that the plasma 
occupies the region 0 < z’ < L, and the measurement plane is located beyond the 
plasma (z’ > L).  The diffraction geometry for the ideal case of an incident plane wave 

:he 
refractive index 1 + n ( R ’ , t )  where R‘= (x’,y’,z’) is a point in the plasma. For 
sufficiently high frequencies the deviation from vacuum is a scalar quantity 

is i!!l?stra:ed in Fig. 1, The prqapxcor. of :he inciden: .*xge is. dc:c;mir.cd 

FIG. I.-Ditliaclion grumctry Tor thccase dinc idcnt  p h c - w d V C  il~uiniiiatiim ofthe plasma 
Thc scattered wave field is measured in some arbitrary plane i. 
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n(R’, t) = -n , (R,  1)/2n,,  where n,(R’, I )  is the electron density, n,, = ki / (4nr , )  is the 
critical density and r,  is the classical clectron radius. For small scattering angles, 
depolarization of the incident wave can be ignored and the electric field treated as a 
scalar quantity (e.g. CLIFFORD, 1978; SURKO and SLUSHER, 1980). The total scalar 
field u(R, t )  at some point R = (+,y,z)  outside the plasma can be regarded as the sum 
of the incident uo(R,t) and scattered waves us(R,/) .  Below we summarize the prop- 
erties of these component fields in turn. 

2. I. The incidenrjdd 
The free-space field satisfies the scalar homogeneous Helmholtz equation 

(v2+k&,, = n (2.1) 

.,.. :.- ...,. :.,. :. ..... .... ~ ~ . ~ ~ ~ . ~ ~ & , ~ ~  

~ i i r  SUIULIUI I  io wiiicii IS inusi cunvcnicnuy obtained in ihe wavenumber domain 
(GOODMAN, 1968). The incident wave field has angular spectrum 

df dpu,,(p ; 0, t )  exp [ - j ( ~ ~  . p -U / ) ]  (2.2) 

where p = (I, y )  denotes a vector in the incident plane z = 0, dp = dx dy, K = ( K ~ ,  K ; )  

and K~ isa two-dimensional wavenumber. For a monochromatic wave we write A ( K ~ ,  
w ;  0) = 2 r r A , ( ~ ,  ; 0)6(w-w,,) where 6 is the Dirac delta function. Satisfaction ofthe 
Helmholtz equation requires that the Fourier amplitudes propagate according to 

A ~ ( H ~ ; Z )  = Y P ( K ~ ; ~ ) A ~ ( K ~ ; ~ )  (2.3) 

where 

X(ti? ; z) = exp ( j t i2z )  (2.4) 

is the free-space transfer function or propagator for the unperturbed beam (SHEWELL 
and WOLF, 1968) and K~ = (k i  -k:)”*. For 1 ~ ~ 1  > k,,,  til is imaginary and the wave 
is evanescent. The field at an arbitrary plane z can be expressed in terms of the incident 
field by taking the inverse Fourier transform of equation (2.3) to obtain 

dp’u,,(R’, t)h(R-R) (2.5) 

with free-space kernel 

For small scattering angles, in equation (2.4) can be approximated to second 
order by 
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K ,  % K~ = k , + k ,  (2.7) 

where k, = -#r:/2k0 = - 2 n / z f  and 5, is the Fresnel length. The approximation is 
valid provided that the residual phase ~ : z / S k : ,  K~ = I # r L /  is negligible. With X 
replaced by its parabolic (or Fresnel) approximation 2, (obtained by setting K:  = tiF 

in the exponent), the convolution theorem again recovers equation (2.5) but with 
Fresnel kernel 

2.2 The diffractedfield 
In the radiation zone (k,lR- R’I >> 1) and in the “low-temperature” approximation 

(SHEFFIELD, i W j j ,  the scattered component satisfies the inhomogeneous Helmholtz 
equation 

( V 2 + k i ) u s ( R , t )  =f(R, t )  (2 .9)  

where 

f (R,  t )  = -2kin(R, t)u(R, 1 )  (2 .  IO) 

is the scalar scattering potential. The solution, obtained using Green’s function tech- 
niques, is an integral equation containing the unknown scattered component U ,  on 
both sides. A closed expression, therefore, does not generally exist. Nevertheless, 
provided n = -nc/2ncrt is small (in a sense to be defined) an approximate explicit 
solution can be found using either an additive (Born) or multiplicative (Rytov) 
perturbation technique. In the Born approximation, the wave field is expanded in 
series form 

U =  U , , + U , + U , + ’ ”  (2.1 I )  

and only terms up to  first-order are retained. Neglect of the second-order term 
-2k:nu,  in the perturbed wave equation is valid provided that Iu, ju, , lBn.  To 
interpret this approximation, we consider the wave to be normally incident upon a 
plasma “blob” of dimension - A .  The difference in phase between the incident ( u n )  
and transmitted (u, ,+u,) beams is A$ = (K-k,)A where K - k , ( l  +n) is the wave- 
number in the plasma. In order that U ,  be small we must have A$ << IT requiring 
that nc<<i(jk, where ic= 2njA.  The maximum toierable density periurbaiion there- 
fore depends upon the dimension of the inhomogeneity. The total Born field is uB = 
u,+u,  where U ,  = U ,  is given by 

dR’fn(R’, t)y(R-R’) (2.12) 
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where 

(2.13) 

is the Green’s function and f,(R’, t )  is identical to equation (2.10) hut for the replace- 
ment of the total field u(R’, t) by the unperturbed field u,(R’, t). Note the duality 
between equation (2.12) and its vacuum counterpart equation (2.5). The integral 
expansion for the Green’s function [cf. equation (A.I)] is also similar to equation 
(2.6) for the free-space kernel. 

The diffraction projection theorem (see also the Appendix) is the wavenumber 
space solution to the inhomogeneous Helmholtz equation obtained in the Born 
approximation. In close affinity with the free-space result equation (2.3), it relates the 
angular spectrum A, of the scattered radiation to the three-dimensional Fourier 
transform F, of the scattering potential on a hemispherical surface in the spatial 
frequency domain: 

AS(K~,(U:Z) = q ( K ,  ;Z)Fo(K,W). (2.14) 

Apart from an imaginary factor, the transfer function 9 is the samc as the free space 
propagator 2 [equation (2.4)] : 

As 0 < I < k,, (propagating components), the vector K is constrained to the hemi- 
spherical surface in reciprocal space that is centered on the origin and has radius k,. 
This is a consequence of momentum conservation for elastic scattering (IKI = k”). 
The parabolic approximation to equation (2.14) is obtained by replacing K~ = xF and 
tiz = k, in the denominator of ?3 and is equivalent to the familiar spatial-domain 
Fresnel approximation to the Green’s function. 

Foranincidentplanewaveu, = uoexp[j(k,.R-o,f)],k,, = (k,,,k,,,k,,)equation 
(2.14) reduces to the form first presented by WOLF (1969): 

where 

K (K,k,) = K - k O  (2.17) 

n = w--0, c< (U,) (2.18) 

and F,(K,Cl) = -2k&V(K,C2) is the transform of the plane-wave scattering potcn- 
tial. Taking k,, = (O,O,k,,), the relation in thc transform planc (k, ,O,k,)  is illustrated 
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in  Fig. 2. The forward-scattered wave vector K lies on a hemisphere that passes through 
the origin and has centre (O,O, -koJ.  The axis of the hemisphere is in a direction 
normal to the measurement plane. The scattering angle 8, is given by the familiar 
Bragg relation sin (0,/2) = K / 2 k , ] ,  K = IKI. 

In the Rytov approximation, it is the exponent of U that is developed as a series: 

A solution for the first-order complex phase $, = x i  + jlp, is obtained by apply- 
ing the Rytov transformation to the wave equation and neglecting terms of order 
(V$,)’cck& (STROHBEHN, 1968). Observe that xI and lp, represent respectively the 
amplitude and phase perturbations suffered by the beam on passage through the 
plasma. For our plasma “blob” we have lV$,l - Alp,/A and the approximation is 
valid provided n <c 1. Unlike the first-order Born approximation, this condition on n 
is independent of the scale size of the inhomogeneities. For forward-angle scattering 
applications, and especially interferometry, where the condition K / k ,  i 1 is strongly 

C=”?tg:. 

part. A useful comparison of the limitations of the two approximations is given by 
SLANEY et al. (1984). In the first-order Rytov approximation ($$ = x.+ jlp, = $,) the 
total scattered field is uR = U ,  exp ($$) where the incident wave u0 = cxp ($,) satisfies 
equation (2.1) and the solulion for the perturbed Rytov phast: can be obtained as 
(DRVANEY, 1986) : 

s.l:isfi:.’, t‘.: p;.:o\; q;:cxi-:~c: .:;r;!< 2;lpe2r tc b: q y i c :  !2 it. 

FIG. Z.--Schematic diqram showing wave vector matching for clastic sc~ttering together 
with Ihe parabolic approximation lo the semi-circular arc in the region of the origin for the 
case of incident plane-wave illumination k,, = (0,O.k). The shaded arrow is the Fresnel 

approximation to the wavenumber component k,. 
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(2.20) 

= -2k~~~mdRn(R’,~)exp[$o(R’,l)-4b0(R,~)]g(R-R‘). m (2.21) 

The three terms in the integrand represent respectively the influence of the medium, 
the incident beam properties and the propagation behaviour. The first-order Rytov 
solution $s is thus constructed from the Born solution equation (2.12) through the 
relation (2.20). Expressions for $s valid in the parabolic approximation are developed 
in the Appendix. 

For the special case of plane wave illumination, a simple result, analogous to the 
diffraction projection theorem [equation (2 .16) ] ,  follows for the Fourier transform of 
the Rytov phase: 

Yp(k,Q;z) = B(k2;z)N(K,Q) (2.22) 

where 

(2.23) j k i  B ( k 2  ; z )  = -exp ( jk z z )  
k ,  

is the Rytov phase propagator. In principle A P  (or YP) can yield information about 
the electron density distribution to a bandlimit 2k,,.  The condition under which 
equation (2.12) and hence the results (2.14) and (2.21) are valid, however, requires 
the scattering anglcs to he small enough that the scalar theory is valid. In this context, 
the spatially apodiring effects and diffraction of  finite diameter probing beams also 
need to be addressed. In Section 3 we therefore examine the Rytov phase for Gaussian 
beam scattering in the parabolic approximation. It is convenient to use the Rytov 
formalism because of the amenable properties of the Gaussian beam Rytov phase 
l/lG = xG+ j q c  in the plane-wave and collimated-beam limits, and because of the 
simple relationship between and the signals measured using heterodyne and homo- 
dyne detection systems. For imaging (or focal-plane) scattering experiments it is 
necessary, however, to first construct an expression for the Rytov phase in front of a 
collecting optic. 

2.3. Effect of a lens 
We consider a lens of focal length .f at distance do from the disturbance (z  = L)  

and calculate the field U .  in the detection plane z = L + d , + d ,  at distance d,  in front 
of the lens. The spccial case when the detector resides in the image plane of the field 
diffracted from a thin phase disturbance is illustrated in Fig. 3. For collimated laser 
beams and small Scattering angles it is reasonable to assume that the optic collects all 
of the scattered radiation. The action of an infinite aperture thin lens in the parabolic 
approximation is to produce a Fresnel transform 
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-do- 

Image plane 

Density wave Focal plane 

-f- 

(2.24) 

The lens kernel h, is related to the Fresnel kernel by 

h, (p', P, do 4 1 = a exp (j4Jhdp' - N P ,  do + a d , )  (2.25) 

... w,,~,t: L... ~~ I = -<koipf,(p:+;a:j is a fixe&p;iase cui~vd;ui~e 

a = l /U  -dllf) (2.26) 

is the lens purnmeter. Recalling that the propagation of the Rytov field U,, = exp 
is governed by the Fresnel integral, and expressing the field in the detection 

plane z as uI, = exp ($="+(I=), comparison of equations (2.24) and (2.5) reveals that 

$ x ( R ,  0 = $s(R, 1) (2.27) 

where 

= ( a p , z + ( a - l ) d , ) .  (2.28) 

The scaling and quadratic phase terms are absorbed by the unperturbed phase 
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$en = $Jo+(In a+ j&).  The Rytov phase in front of the lens can thus be obtained 
from $3 and the measurement geometry using a linear coordinate transformation. 

The character of the “lens” Rytov phase $J=is determined by E. For example, when 
f -  CO then a = 1 and the lens-free result is recovered. The Fourier transforming 
property of the lens for the field in the front focal plane is obtained in the limit 
d ,  =L a + m and is discussed in Section 5. Substituting the imaging condition 
a = - da/d l  = - l / M  gives $* = $o( -p/M, L, t )  which is identical apart from 
inversion and magnification by M- to the Kytov phase in the piane L. imaging 
techniques are particularly useful for restoring near field conditions (see Section 6) at 
a remote measurement plane. 

3 .  G A U S S I A N  B E A M S  
The Gaussian-beam Rytov phase can he obtained from the plane-wave phase by 

means of a coordinate transformation. We assume a probing Gaussian beam coinci- 
dent with the z-axis with beam waist located at zn, and take the y-axis to point in the 
toroidal direction. The transverse and longitudinal coordinates are normalized to the 
beam waist dimension i v o  [radius at exp (- I )  of the power profile] and Rayleigh 
length zK = kow& respectively: 

(3.1) 
P 

w n 
U = -  v = k w ,  

Propagating the Gaussian plane wave at the waist position in to the plane i using the 
Fresnel integral allows the free-space field to be written as uGp = exp ($Jon) with 
complex phase 

where 

and the beam power ai is, for convenience, taken as unity. Equation (3.3) is valid 
provided thr parabo!ic mndition [<< !k,w,)* is satisfied. Substituting equation (3.3) 
in equation (A.8) for the parabolically approximated $s readily yields the first-order 
Gaussian-beam Rytov phase : 
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with kernel 

a&; U, i, i’) = exp M U .  v+uF( i - l l ) l l  (3.7) 

where u p  = - u 2 / 2  and 

/j = y ’ / y  y’ = I +j(Y- in) .  (3.8) 

The two-dimensional refractive index transform has the normalization 
N(v; Y, t )  = N ( k ;  z’, t ) /w i .  Analogous expressions to equation (3 .6)  apply for the real 
(amplitude) and imaginary (phase) parts of $G with kernels 

The kernels fold in effects due  both to diffraction from plasma irregularities and 
spreading of the finite-diameter probing beam. 

The  plane-wave Rytov phase $p [obtained by inverse Fourier transformation of 
equation (2.22)] is recovered in the limit /I + I .  When the interaction region is narrow 
compared with the Rayleigh range ( I  + O), the parameter /j - /7 can be taken R S  

independent of the plasma coordinate i‘ and $G obtained from the plane-wave phasc 
$p through the coordinate transformation : 

$(G(U,~ ,  t )  = $P(FR t )  (3.10) 

where, of course, R = (iv,,u,zR[). The Gaussian-beam Rytov phase for diffraction 
from a thin phase screen and in front of a collecting optic is obtained by combining 
equations (2.27) and (3.10): 

$ n ( R  1 )  = $lp[d~, Fz+ (n -  I ) d , ,  11. (3.1 I )  

This expression is used below to calculate the scattered signals from airborne ultra- 
sound for comparison with experiment. 

4. DETECTION 
We now relate the total Gaussian-beam Rytov phase to the signals registered by 

the measuring apparatus. Since R cc wo,  measurement of $q requires the carrier 
frequency to he down shifted to a range where the sidebands carrying the desired 
information are accessible. This is obtained by mixing with a suitable local oscillator 
uLo in a non-linear detecting element. For a “square-law” detector contained in the 
plane i (we assume. for the moment. that there is no  lens). the sienal resultine from 

~ 

the sum of the field amplitudes U,>  = u,+rr,., is givcn by (HOLZHAUER and MASSIC, 
1978) 
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where C is a constant proportional to the detector sensitivity, U,, is the aperture 
function and I /Tis  the detector bandwidth. We assume a local oscillator related to 
the incident field by 

where r is the ratio of the wave amplitudes, RLo = oo-wLo is the intermediate 
frequency (IF) and is an arbitrary constant phase difference. Suppressing, for the 
moment, the explicit spatial and temporal depcndences, the signal registered by a 
point detector is proportional to the local intensity 

where cc = exp (ic0+$&) is the beam intensity profile. In  the absence of a local 
oscillator beam (I = 0, homodyne detection), only intensity fluctuations xc arising 
from the diffraction of the phase-perturbed incident beam are observable (e.g. 
shadowgraphy, far-forward scattering). On the other hand, the phase qG can he 
determined free ofcontamination from amplitude fluctuations when either xc. is small 
(and r 2 I )  or R,, >> 0 where R represents a typical plasma component frequency. 
In the latter case, 'p, can he recovered by standard demodulation techniques (e.g. 
CHOI er al., 1986). 

For the phase scintillation interferometer (SHARP, 1983) R,, = 0, 1xG/, IqGI c< 1 
and the fluctuating part of the detected signal [equation (4.3)] is proportional to 

The constant relative phase Q,., is usually fixed at 4 2  or 3 ~ / 2  to give maximum 
sensitivity to the perturbed phase 'pc. Nevertheless, unless either ditfrdction effects 
are small lxc\ << I'pal or the local oscillator is strong r >> 1, intensity variations can 
significantly affect the measured signal. When lqcl is not negligible, hut providing the 
phase variation across the beam or detecting element is small, the spatial information 
is still carried by a term proportional to <pa. Since both real and imaginary parts of 

of  the complex signal 
,b. f i o ~ w e  n . > t n l r = l l x r  in the Rimrtn~tino inten-itv i t  ir Innmnviite tn r t n , A v  the  n i n n e r ~ ; ~ ~  YCI..D"'L..UIUI".., I..... I..ll."" L.., 1.11 I ......,, I . , . .  " ~ ~ . - ~ . . " . ~  ."".I", 1.11 r . " r - . ~ , * Y  

Equations (4.5) and (3.11) together allow computation of the spatial evolution of the 
complex signal (before and following the action of a thin focussing lens) for Gaussian- 
beam scattering from a thin (/ << 1) normally inclined plasma wave. The real (homo. 
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..I” . .I.._ . .l... ..,.. 
Fa;. 4.--Spatial evolution of Ihc real (left side) and imaginary (right side) parts of Ihc 
complex signal (. = eG$ for Gaussian-beam scattering from a normally inclined refractive 
WBW haling Pa) h,, = 4 2 .  (h)  kw, = li and (c) hi.,, = 2n. A collecting optic occupics thc 
plans:= 0.5andIhefocalandimageplanesarelocatedati = 0 . 7 5 a n d i =  l.O,resprclively. 

n ( R ’ , t )  = Anu(z’ )cos(E.p-Qt)  (5 .6)  

where An and a(;’) are the perturbation amplitude and ;’-distribution and k is the 
mean transverse wavcnumber. In the absence of a local oscillator beam, the detected 
signal is proportional to C, = FCjxc;. Denoting by V = LM.” the normalized wavevector 
for the plasma disturbance and P,. = -?/2, we obtain for the real and imaginary 
parts of P 

%(U, /) = di’exp [ .~. i . ( i ’ - [ , , ) ] ix  cos (Rr+&)u(<’) (5.7) .c’ 
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where 

- An 
1; = T e x p  ( -U2 +&){exp (2U, V) f e x p  (-2ii.V) T 2cos [ 2 ~ ~ ( i ' - ( ~ ) ] }  ' P  

( 5 . 8 )  

are the time-varying signal envelopes and the relative phases satisfy 

1 -exp(--2U.S) 
tan8, =cot [ ( ( ' - ( ) -  " U ~ 1 1 + e x p ( - 2 i i . ~ )  

t" = -tdn[(i'-[,JUF] I +exp ( - 2U . V) ' 

1 - exp ( -  2U .V) 
(5.9) 

For a sufficiently narrow disturbance u ( c )  -+ &r), the results of EVANS et al. (1982) 
for the homodyne signal are recovered. 

When U,l <c I (this Runiun-Nuth limit is discussed more fully in the next section) 
the quantities 0, + n/2 and I x  can be removed from the integral with the result 

?,(U, t )  = iz sin (Qt)  exp ( - , ju.  ? ( , ) A  (-U .v). (5.10) 

In principle, the line-of-sight distribution u ( c )  can then be inferred from the 
measurements Fx (or Q. Practically, however, the required division by the signal 
envelope Ix is extremely noise prone, and limits determination of U to very low 
wavenumbers. 

6 .  N E A R  F I E L D  
We here derive the general form for the transform of the complex signal c = e$G 

in an arbitrary plane ( > I beyond the plasma. The apodizing term is 

and the Fourier transform C(v; (, t )  = C(k; 2, t ) /w;  or the complex signal is given by 
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where 

M Y V )  = exp (- lvvI2/4) (6.3) 

is the Fourier transform of eG.  
For the standard case of discrete chordal measurements, most of the beam energy 

is collected using a focusing lens and sensed by a single detector. Provided that 
A& <c I over the beam area, the detected signal is proportional to 

(The contribution from the amplitude perturbations averaged over the beam area can 
be shown to vanish.) Assuming that the collecting aperture U" is large compared with 
the beam dimensions we can write with little error 

where C, is the anti-Hermitian part of C. Because of the diffraction of high-k 
information the probing beam acts as a low-pass filter for transmission of line- 
integrated refractive index information. When the plasma occupies the region within 
a Rayleigh length of the beam waist (co//imuted beam), the filter bandwidth is approxi- 
-O+PI., ~n-+;-ll., ; n . r q r ; . l n +  I -  ?I.., q-4 the ~;"nql r.,n h- nvnrnrrnrl 11c Irf ~n,.-+;nn 
" , 'ZLC,J  " ~ Y , " " J  I I I " Y 1 I Y I I L  {,-A, '"0, Yll" L l l r  a16"Yl CY., "C ""p"c""c" Y O  LC'. CyYYL 'V"  

(6.1211 

where i,(O,z', t )  is the filtered electron density on axis of the beam. Observe that 
this result is valid throughout the propagation region beyond the plasma. I t  would 
appear that an approximately bandlimited projection of the plasma can be obtained 
using a set of sufficiently closely spaced discrete probing beams. This principle is 
exploited in a scanning interferometer arrangement reported by HOWARD (1990). 

We now consider the case when measurements are made within the collimated beam 
profile as with scintillation and phase contrast, or imaging interferometry experiments. 
For collimated beams, second-order terms in [ and i' are neglected [this is a weaker 
condition than that leading to equation (3. IO)  where first-order terms in I are ignored]. 
This allows E,(yv-y'v') + EG(v-v') to he removed from the i' integral: 

(6.7) 
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The Gaussian function significantly weights the integral for wavenumbers lv-v’l < I .  
For values of v’ satisfying this inequality the complex exponent can be approximated 
by noting that v.v’ z v2 provided that lv.(v-v‘)l Q u I v - v ’ I  6 U c< U’ where U = Ivl. 
The final inequality requires the expanded beam waist to be much wider than the 
transverse scale length of the density variation. We refer to the region U (  k,z << 1 
as the Gaussian near Jidd.  This is distinct from the near field which satisfies 
u2[ /2  5 Ik,;lz c< I .  Physically, the condition U( = kGz - ~ / ( z ~ z ~ ) ’ ’ ~  <c 1 requires 
substantial overlap of the main beam and diffracted orders as indicated i n  Fig. 3. 

In the Gaussian near field of an expanded beam, equation (6.7) becomes 

C(v, n; = B G ( v F  ; c)fi(vF, n) (6.8) 

where V, = (v. U,) and fi = ( N I  & ) / ( 2 ~ ) ~  is proportional to the two-dimensional 
convoiution o f N  wiih EG. The parabolic approximation to ihe Gaussian-beam Ryiov- 
phase propagator is given by [cf. equation (2.23)] 

WG(UF ; 0 =. ikozR exp (;UFO. (6.9) 

In the spatial domain, the measured signal is proportional to the plane-wave Rytov 
phase weighted by the tiausian-beam intensity prohie jci. equation (i.iTjj. For 
separable N ( v ;  c, I )  = N ’ ( v ;  t)a((’) and provided U >> I ,  equation (6.7) becomes 

C(v; (, t )  = .gG(UF; [ )N’ (v ;  ( )A(+)  (6.10) 

where I?’ = (N’*EG)/(2n)’ is defined analogously to N and A @ , )  is the Fourier 
transform of a ( r ) .  Knowledge of fi‘ then allows a((‘) to be determined to a band- 
limit such that division by N’ does not prohibitively amplify noise on the measured 
spectrum C. 

Let us consider the case of a quasi-monochromatic density perturbation pro- 
pagating normal to the laser beam. As indicated schematically in Fig. 5 ,  the spatially 
localized beam presents a spread of incident wavenumbers Akx - 2/w0 that sample the 
source transform over the range Akz - (K/k , )Ak, .  The scattered waves are conveyed 
according to the strength of the transform N(K, n) at the intersection with the circular 
arc defining the locus of allowable scattered wave vectors. Since the spectral width 
AkA - 2n/L represents the minimum distance over which A can change significantly, 
the narrower the structure the greater will be the range of its transform in the k; 
direction. It is therefore sufficient that the Klein-Cook parameter (KLEIN and COOK, 
!96?) Q = $?[I. he small for the density wave t o  be sensed by the probing radiation. 
This is ensured when the phase screen is sufficiently thin (Raman-Nath regime). 
Otherwise the incident beam must be inclined in order that k-matching be satisfied 
(Bragg regime). Determination of A to the bandwidth AkA requires ( K / k , ) A k ,  3 2n/L. 
Since the beam is collimated ( L  c< zn) we therefore have 1 << Kwo < Q so that, for 
collimated beams, the scattering must be performed in the Bragg regime in order that 
the z-distribution of the source be recovered. 

In the geometric optics limit we approximate %(U,;  () % j k g z K ( I + j v d ) .  Since 
[ > I ,  the geometric optics limit implies Raman-Nath diffraction where the transform 
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f 

FIG. 5.-Schemdtic diagram showing satisfaction of the k-matching condition for Gaussian- 
bram scattering from the quasi-coherent plasma perturbation whose domain in the Fourier 
transform plane is shaded. An incident k-spread Akx maps the transform over the range Ak2. 

fl can also be approximated to first order : 

fi(Vp,R) z d(’(l -juFc)fi(v,C2; c). (6.1 1) 

With these expansions, inverse Fourier transformation over v and R gives 

c = j ~ , ( p l w o ,  0 = -. irC&,edp/u~o ; Y) dz’ndp, z’, 4 (6.12) sd 
where higher-order terms have been neglected. The result is valid in the Rytov approxi- 
mation which, assuming the medium varies smoothly, can be written as qG << k,L 
where the right-hand side is the phase shift of the unperturbed wave. In absolute 
terms, the phase qpc can be large. Gaussian near-field and geometric optics conditions 
can often be ensured using imaging techniques (HUGENHOLTZ and MEDDENS, 1982; 
YOUNG el al., 1984; HOWARD et al., 1987; NAZIKIAN and SHARP, 1987). When the 
beam is allowed to freely propagate before being sensed by an array of detectors (e.g. 
PEEBLES et al., 1987; KIM et al., 1988) however, the effects of propagation (.gRF) must 
be carefully assessed (HOWARD et ul., 1990). 

6. I .  Diffraction from wuues 
To compare with the results of scintillation experiments presented in Section 7, we 

apply equation (6.7) to obtain the near- and intermediate-field behaviour for laser 
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diffraction from density waves. We assume the sound field takes the form of equation 
(5.6) with V = kiv<,. Substitution into equation‘(6.7) and separating c into real and 
imaginary parts gives 

d[‘u(c)I; COS (Ot+O;) (6.13) 

where 

An 
Ix = -exp [ -U* - p,a,([- (‘)I {exp (2piu. V) 
v 2  

+exp ( -2piu. V) T 2cos [2g,V,((-5‘)]} ‘ I * ,  (6.14) 

cos(~+)-exp(2/~,u.V)cos(u_)  
s in(u , )+exp(2P,~ .V)s in(u_)  

tan0, = . 

sin(u+)-exp(2b,u.V) sin(u_) 
cos (n+)+exp (2p,u.V) cos ( U - )  

tan0, = - 

with 

(6.15) 

(6.16) 

In the far-field limit, and with the identification E [-c, equation (6.13) reduces to 
its Fraunhofer counterpart equation (5.7) (see also the Appendix). 

For a collimated laser beam p -  I - j ( [ - [ ’ )  and for a localized perturbation 
( L  << z n ) ,  the above result reduces to a simple form obtainable directly from 
equation (3.10). For the Gaussian amplitude distribution 

a(z) = (2n)-”’exp[-z2/(2L2)] (6.17) 

( L  <c zn) and monochromatic sound field k = (k, 0) [see equation (5.6)], it can be 
established that 

c = e& = j@eG(u;y)exp(-Q2/2)cos(tiu-Ot)exp(jti,[) (6.18) 

where @ = koLAn 5 -&rcLAnc is the absolute phase perturbation. Using the above, 
we can readily obtain explicit expressions for the heterodyne and homodyne signal 
envelopes and relative phases for comparison with experiment. Finally, for a thin 
phase screen (Q << I ) ,  the real part of equation (6.18) reduces to the near-field 
expression obtained by JAMES and Yu (1985) for Gaussian beam scattering from 
waves. 
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7 .  SCINTILLATION E X P E R I M E N T S  
The scintillation diagnostic is a high-sensitivity Mach-Zehnder imaging inter- 

ferometer that operates in the near-field (Rainan-Ndth) regime and is specifically 
designed for the detection of high spatial and temporal frequency plasma density 
induced phase and amplitude fluctuations. The instrument uses an expanded Gaussian 
beam ( w 0  - 10 mm) of 10.6 pm radiation for heterodyne and homodyne scintillation 
measurements of airborne ultrasound. The measurement system layout is shown in 
Fig. 6. 

The optical system (consisting of a IOW gas-discharge CO, laser, beam-expansion 
optics and interferometer components) is mounted on a massive marble table and the 
sound source is a standard tweeter (cooled to -5°C) driven by an audio amplifier 
(300 W rms). Anti-reflection-coated 7.5 cm diameter ZnSe 50% beamsplittcrs are used 
to separate and combine the probing and local oscillator beams. The local oscillator 
is th-s xmina!!y identica! to the prohiag be-m apart fro- a C G X S ~ ' & R ~  pha- otf.et 

Compute. 

10 w CO2 Laser PZT 

FIG. h.-Schematicdiagram ofscintillalion interferometer for ultrasonic WBVC mcssurements. 
PZT denotes the peizo-driven mirror used for fixing thc relative path lengths bclwcen the 

interferometer ;irms. 
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held at bL0 c 742 by the peizo-controlled mirror in the interferometer reference arm. 
The Rayleigh length zR - 40 m is much greater than the sound screen thickness 
L - 0.005 m so that the Rytov-phase perturbation is given to sufficient accuracy by 
equation (3.10). The perturbed field propagates to the detector plane located at a 
distance z = 2. I O  m from the interaction region. Up to two Fresnel zones are accessible 
by scanning the sound frequency from 5 kHz to a maximum of 100 kHz. On the other 
hand, the sound field remains strongly Raman-Nath even at the maximum sound 
frequency (e = iiFii - 6 . i5 j .  

A single Hg-Cd-Te detector of dimensions 300 x 300 pm (located on the axis of 

0 
.d 

2 

0 
.I 

1 

0 ." 
2 

-5 4 

0 2 4 6 

Fresnel parameter 0.4 

FIG. 7 (a)-[c).-The experimental (dolled) and campuled [soiid) ratios oi lhc heterodyne 
and homodyne signals versus the Fresnel parameter Q = u d  for detector positions x = 0, 3 

and 6 mm from the Gaussian-beam centre. 
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the beam) is used for these measurements. Using synchronous detection techniques 
(integration time 1 s), the interferometer is capable of sensing phase shifts as small as - radians. The homodyne and heterodyne signal amplitudes are measured in 
turn and digitized for later processing by computer. 

As noted above, the Fresnel parameter VF[ is varied by changing the frequency of 
the sound waves. The experimental points and theoretical cnrves for the variation of 
the ratio of heterodyne and homodyne signal amplitudes with GF[ measured at x = 0, 
3 and 6 mm from the beam centre are shown in Fig. 7. The ratio is taken to remove 
the dependence on the system frequency response. The decrease in signal-to-noise 
ratio at higher Q values is due to the decrease by an order of magnitude in speaker 
efficiency. The nominal experimental parameters are: sound speed C, = 330 + 5 m s-', 
r = 1.0k0.05, $Lo = -90"*5", w o  = 1 1  + 1 mm and z = 2.10k0.02 m. Systematic 
discrepancies are possibly attributable to a small mismatch of local oscillator and 
probe beams. We also note that a slightly closer fit with experiment can usually be 
obtained by the appropriate choice (within the quoted uncertainty bounds) of the above 
parameter values. The sensitivity to screen thickness L and waist position zo (within 
a Rayleigh range) is, however, weak. 

The general agreement over three orders of magnitude confirms the functional 
behaviour described byequation (6.18). Thevariation with xhighlights theimportance 
of finite beam effects for high-resolution near-field scattering measurements. Based 
on the measurements of Fig. 7(a) we conclude that near field (uF[ < 1) measurements 
of the complex signal should he sufficient to locate a narrow, coherent source with an 
accuracy of - 5 % .  Experiments examining other parameter dependences, and in 
which both phase and amplitude response are measured, are underway. 

ALknou.lr~~emeni~-T-Thc authors wish lo thank R. N. NAZIKIAN for useful discussions and S. M. 
HAMBEnGEK for provision of the facilities necessary for this research. 
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Insrrun~. 56.81 

A P P E N D I X  : D I F F R A C T I O N  P R O J E C T I O N  T H E O R E M  A N D  T H E  
P A R A B O L I C  A P P R O X I M A T I O N  

The diffraction projection theorem (WOLF, 1969) is the reciprocal space solution to the inhomogeneous 
wave equation in thc first Born approximation. For the special case of plane-wave illumination, and in the 
limit of zero wavelength, the result reduces lo  the well-known "ccntral slice" theorem lor non-diffracting 
tomographic imaging. The proof of the  thcorcm, which we skctch below, rests on the assumption that the 
scaltering is weak in the Born sense. More comprehcnsive treatments are given by WOLF (1969). M m u m  
er U / .  (1980). KAK (1985) and DEVANLY (19%). 

ThcCreen'sfuunction is thespherical-wavesolution tothe wavrequationforapoinisource. Thespherical 
wave has the plane-wave decomposition [BANOS. 1966; cf equation (2.6)]: 

The above expression forg is inserted into equation (2.12). and since J o  is zcro for L > L, we replace Iz-z'l 
by z-z' lo obtain afier some rearrangement 

Rccognizing ihe rightmost intcgral as the Fourier transform Fa of the scattering potenlial. the =altered 
field can be more compactly cxpressed as 

Fourier transformation over p and I yields the desired result (2.14). 
In thc parabolic approxim;iiion U, can be cast in a Frcsncl intcgral form similar to equation (2.5) for the 

frcc space field. We prefer, however, to represent the scattercd ficld as Ihc superposition of beams identical 
io thc incident field but difractcd from the medium at anglcs dctcrmined by the spectrum ofthe Scatterer. 
In thc parabolic approximation the tnjectory of the plane-wavc component (0.0, k , )  of the incident ficld 
diKvactcd rrom the perturbation K,: = (k ,k, )  is 

where i' is the coordinate in the plnsma. Applying thc convolution theorem in equation (A.2) isolalrs the 
threc-dimcnsional Fouricr transform U, of the incidcnt ficld : 
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Substituting for U ,  

U&) = ZnA,(r , ;  0)6[Kz- (k:  -dJ "'I, (A.6) 

transforming to trajectory coordinates p' and integrating then gives (NAZIKIAN, 1989) 

o, dKdm 
~ R , I )  = (o"di'(-mm exp ( j#c.p)%(kr- ; z - z ' ) N ( k , n ;  z')u.(p' ,  2 )  exp(-jol) 

wherc N(k, R ;  7') is thc I-D inverse Fourier transform ofN(K, Cl) and 9, is the parabolic approximation 
to the plane-wave propagator W [equation (2.23)j. This shows that for each density spectral component 
N ( k ,  R ;  i') thcre is a diKractcd wave U&', i) cxp (-j<w), identical in form tu the incident field. and that 
thc field U, is thc propagation-weighted superposition of all such contributions. More importantly, the 
result provides a uscfd representation for the Rytov phase: 

(A.7) 

dr W, 0 = [d='/-- ( ~ n ) i e x p  ( i x . p ) O F ( k F  ; z - G V ( k  ;i. 0 exp [$&'.4 -$dw)I. (A.8) 

The Gaussian-beam Rytov phase $= is obtained easily on substitution for the unperturbed phase (IG.  from 
equation (3.3). The expression also has some nice properties that facilitate calculation of$, in the rar-field 
limit. 

Transilion 10 rh?.farfreld 
Equation (A.8) can be recast in the form 

dK 
$LR, 0 = i k o ~ ~ d r ' s r p  ( jo 'P ' i2) l  -uI Y e x p  ( 2 4 -  ( - j r 2 p " / 2 ) N ( k  ;z'. Oexp W e ( ~ ' . z ) - i o ( ~ . 1 ) 1  

(A.9) 

wherc 0' = ko/(z-z'). For tho plarie w'aiie (0, 0, k J ,  the final lcrm is unity. In lhc far ficld, r' 2 k, / r  - 0 
and the complex exponential in the second integral lends to the impulse -2njo%(p') (PAPOULIS, 1986) 
with the m u l l  

Retaining terms u2 ( I  +z'/z)k,/z in  the cxponent and taking c' = k,/r elsewhere, we finally obtain 

IG,(R, 1 )  = rdp.4N(KF; 1 )  (A.II) 

wherc. with the correspondence k = (ko/z)p,  K, is the Fresnel wave vector introduccd abave, and 

rF(P,4 = ik. e v  ( - i koz )hdp ,z )  

is the Fourier transform of the parabolic plane-wave propagator I,. 

phase is given by 

(A.12) 

For Gouv.~ion beams. and in terms of the dimensionless quantities introduced in Seclion 3, the Rytov 

where 

(A.14) 
- U  U=- 

i-i' 
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is analagaus to the focal-plane coordinate defined in Section 5. Performing the [' integration in the far- 
field limit, we find 

$Su,C 0 = j k , , z , e x p ( ~ d ' P )  J(~R)I e x p [ - ~ d a - v ) ~ / 2 I N ( v ,  - - 6 . v - o ~ ;  0 (A.15) 

where, as USUBI, up = -v'/2. With the correspondence E I c', the fdr-field and focal-plane expressions for 
the complex signal e = eo$, are identical. 

s" dv 


