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Abstract—A scalar diffraction treatment of forward-angle laser scattering diagnostics {e.g. scintillation
interferometry, far-forward scattering) is presented. Resulis obtained by other workers for Gaussian beam
scattering from plasima waves arc generalized for arbitrary weakly scattering media and for both near-field
(imaging) and far-field (focal plane) experimental configurations. Essential elements of the theory have
been confirmed by near-field experimental measurements on airborne ultrasound.

1. INTRODUCTION

LINE-OF-SIGHT MEASUREMENT of the plasma refractive index (forward-angle scattering,
interferometry, shadowgraphy etc.) is a powerful diagnostic for both the short-scale
random components of the plasma density distribution as well as the long-wavelength
coherent structures (e.g. JACOBSON, 1982 ; YOUNG et al., 1984 : HOwWARD et al., 1987;
NazikiaN and SHarP, 1987 ; KiM ef al., 1988 ; WEISEN et af., 1988). In this work, an
analysis of the diffraction of a Gaussian laser beam from a weakly perturbing, but
otherwise arbitrary refractive index distribution, valid throughout the diffraction
region is presented. The implications for interferometric and small- angle scattering
cxperiments in necar, Fresnel -\mtermeumw; and far-field limits are examined. The far-
field small-angle description of scattering from waves given by Evans et al, (1982) is
generalized to arbitrary refractive structures, reducing to the Evans expressions for
harmonic disturbances. The work, however, highlights the properties of near-field
techniques which have the advantage of conveying the transverse spectral features of
the medium with little or no distortion. In addition, measurements in the Fresnel
region allow some line-of-sight resolution of the scattering source distribution. Exper-
imental scintillation measurements confirming these expectations are reported here.

Section 2 reviews the relevant aspects of scalar electromagnetic diffraction theory
introducing both Rytov and Born perturbation solutions to the wave equation for
weakly fluctuating media. Qur starting point is the diffraction projection theorem
(WoLF, 1969), which is the wavenumber domain solution to the scalar inhomogeneous
wave equation in the Born approximation. It is the Rytov approach {e.g. STROHBEHN,
1968), however, that proves the more natural framework for the analysis of forward-
angle, scattering techniques. An expression for the perturbed complex Rytov phase
for the ideal case of plane-wave illumination is obtained, and shown to transform
simply (in the paraxial approximation) under the action of a collecting optic. The
theory is readily extended to Gaussian beams in Section 3 to yield a general expression
for laser-beam scattering from an arbitrary medium in the region beyond the plasma,
with or without a thin collecting optic. In Section 4, it is shown that the signals
obtained using optical mixing detection (e.g. heterodyne detection) are related linearly
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to the perturbed Rytov phase. Limiting expressions for the far-field (focal plane) and
near-field (imaging) detector signals are then derived in Sections 5 and 6. Finally, in
Section 7, we report near- and intermediate-field interferometry experiments on air-
borne ultrasound that support the theoretical results. It is demonstrated that a thin
coherent disturbance can be localized from near-field measurements of the complex
Rytov phase,
2. SCALAR DIFFRACTION THEORY

We consider propagation in the z direction of a monochromatic wave (w, = ck,,
ko = 2n/1,) of arbitrary spatial distribution through an inhomogeneous, weakly per-
turbing plasma. The coordinate origin (incident plane) is chosen so that the plasma
occupies the region 0 <z’ < L, and the measurement plane is located beyond the
plasma {z’' > L). The diffraction geometry for the ideal case of an incident plane wave

i - oo e et
is illustrated in Fig. 1. The propagation of the incident wave is determined by the

refractive index 1+4#(R’, 1) where R = (x',)",z") is a point in the plasma. For
sufficiently high frequencies the deviation from vacuum is a scalar quantity
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Fia, [.—Diflraction geometry for the case of incident plane-wave ilurnination of the plasma.
The scattered wave field is measurced in some arbitrary plane z,
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n(R, 1) = —n, (R, 1){2n,, where n(R’, 1) is the electron density, s, = k3/(4nr,) is the
critical density and r. is the classical clectron radius. For small scattering angles,
depolarization of the incident wave can be ignored and the electric field treated as a
scalar quantity (e.g. CLIFFORD, 1978 ; SURKO and SLUSHER, 1980). The total scalar
field »(R, 1} at some point R = (x, y, z) outside the plasma can be regarded as the sum
of the incident u,(R, ¢) and scattered waves w (R, {). Below we summarize the prop-
erties of these component fields in turn.

2.1. The incident field
The free-space field satisfies the scalar homogeneous Helmholtz equation

(V2 +kDuy =0 (2.1)
the solution to which is most convenienily obiained in the wavenumber domain
(GoopumaN, 1968). The incident wave field has angular spectrum

[z8]

drdpuy(p; 0,0 exp [—j(k, - p—owi)] 22)

Ak, 0;0) = J
where p = (x, ¥) denotes a vector in the incident plane z = 0, dp = dxdy, k = (k,, x.)
and k isa two-dimensional wavenumber. For a monochromatic wave we write A{k |,
w;0) = 2rA 4, ; 0)d{w—w,) where § is the Dirac delta function. Satisfaction of the
Helmholtz equation requires that the Fourier amplitudes propagate according to

Aok, ;2) = H(k,;2)Ae(x,; 0) (2.3)

where
H(k, ;z) = exp (jr.z) (2.4)
is the free-space transfer function or propagator for the unperturbed beam (SHEWELL
and WoLF, 1968) and x, = (k2 —k2)'2 For |k, | > k,, &. is imaginary and the wave

is evanescent. The field at an arbitrary plane z can be expressed in terms of the incident
field by taking the inverse Fourier transform of equation (2.3) to obtain

uy(R, 1) = f dp'uy(R’, DH(R—R') (2.3)

with free-space kernel
W) = | B p (e R (2.6
= .o xp (jr* R). .6)

For small scattering angles, k. in equation (2.4) can be approximated to second
order by
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K, % kp = ko +ke (2.7)

where k. = — k% [2k¢ = —2n/z¢ and zy is the Fresnel length. The approximation is
valid provided that the residual phase k% z/8kj, x, = |x | is negligible. With %
replaced by its parabolic (or Fresnel) approximation 3#°: (obtained by setiing x, = K
in the exponent), the convolution theorem again recovers equation (2.5) but with
Fresnel kernel

h["(pa Z)

R o () ey

JApz 2z

2.2 The diffracted field

In the radiation zone (k;|R— R’| » 1} and in the “low-temperature’ approximation
(SHEFFIELD, 1973), the scattered component satisfies the inhomogeneous Helmholtz
equation

(V+kdus(R, 1) = f(R, 1) _ (2.9)

where

R, 1) = —2k2n(R, Du(R, 1) (2.10)

is the scalar scattering potential. The solution, obtained using Green’s function tech-
niques, i$ an integral equation containing the unknown scattered component u, on
both sides. A closed expression, therefore, does not generally exist. Nevertheless,
provided n = —n./2n. 1 is small (in a sense to be defined) an approximate explicit
solution can be found using either an additive (Born) or multiplicative (Rytov)
perturbation technigue. In the Born approximation, the wave field is expanded in
series form

u=u()+u]+u2+“' (2-11)

and only terms up to firsi-order are retained. Neglect of the second-order term
—2k2nu, in the perturbed wave equation is valid provided that |u,/uy| <n. To
interpret this approximation, we consider the wave to be normally incident upon a
plasma “blob” of dimension ~ A. The difference in phase between the incident (i)
and transmitted (u,+2z,) beams is Ag = (;x— ko)A where k ~ k{1 +#) is the wave-
number in the plasma. In order that u, be small we must have A¢p <« n requiring
that n<« Kjk, where K = 2n/A. The maximum tolerable density perturbation there-
fore depends upon the dimension of the inhomogeneity. The total Born field is w, =
uo+u, where u, = u, is given by

uy(R, 1) = r} dR’ fo(R’, )g(R—R’) (2.12)

T Hereafter simply the “density”™.
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where

—exp (jko|R][)

g(R) = 47| R|

{2.13)

is the Green’s function and £, (R’, 1) is identical to equation (2.10) but for the replace-
ment of the total field «(R’,¢) by the unperturbed field w,(R’, 7). Note the duality
between equation (2.12) and its vacuum counterpart equation (2.5). The integral
expansion for the Green’s function [cf. equation (A.1)] is also similar to equation
(2.6) for the free-space kernel.

The diftfraction projection theorem (see also the Appendix) is the wavenumber
space solution to the inhomogeneous Helmholtz equation obtained in the Born
approximation. In close affinity with the free-space result equation (2.3), it relates the
angular spectrum A, of the scattered radiation to the three-dimensional Fourier
transform F, of the scattering potential on a hemispherical surface in the spatial
frequency domain:

Ax ,w:.2) = Gk, ; 2)Folk, w). (2.14)

Apart from an imaginary factor, the transfer function % is the same as the free space
propagator # [equation (2.4)]:

Bk, ;z) = J exp (jk.z). (2.15)

1Y

As 0 < |k, | <k, (propagating components), the vector « is constrained to the hemi-
spherical surface in reciprocal space that is centered on the origin and has radius k.
This is a consequence of momentum conservation for elastic scattering (|| = k).
The parabolic approximation to equation (2.14) is obtained by replacing x, = x¢ and
K, = ko in the denominator of ¥ and is equivalent to the familiar spatial-domain
Fresnel approximation to the Green’s function.

For anincident plane wave 1y = aoexp [j(ky R—wo8)], ko = (kq.. ko, ko.) equation
(2.14) reduces to the form first presented by WoLF (1969) :

Aplr ,w;2) = Gk, ; 2)Fp(K, Q) (2.16)

where
K= (k,k.)=x—k, (2.17)
Q=w—w, < wy (2.18)

and Fo(K, Q) = —2kja,N(K, ) is the transform of the plane-wave scattering poten-
tial. Taking k, = (0,0, k), the relation in the transform planc (k,,0,k.) is illustrated
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in Fig. 2. The forward-scattered wave vector & lies on 2 hemisphere that passes through
the origin and has centre (0,0, —k¢,). The axis of the hemisphere is in a direction
normal to the measurement plane. The scatlering angle 8, is given by the famuliar
Bragg relation sin (0,/2) = K/2k,, K = |K|.

In the Rytov approximation, it is the exponent of « that is developed as a series:

u=expoti, +y.+ ). (2.19)

A solution for the first-order complex phase v, = ¥, + j@, is obtained by apply-
ing the Rytov transformation to the wave equation and neglecting terms of order
(Vi )2 «kin (STROHBEHN, 1968). Observe that y; and ¢, represent respectively the
amplitude and phase perturbations suffered by the beam on passage through the
plasma. For our plasma “blob” we have |V | ~ A@ /A and the approximation is
valid provided n « 1. Unlike the first-order Born approximation, this condition on n
is independent of the scale size of the inhomogeneities. For forward-angle scattering
applications, and especially interferometry, where the condition K/k, < 1 is strongly
satishad the Rytov approximation would anpear 1o be superior toits Rorn counter-
part. A useful comparison of the limitations of the two approximations is given by
SLANEY ef al. (1984). In the first-order Rytov approximation (, = %+ jo, = ;) the
total scattered field is u, = 0, exp () where the incident wave 1y = exp () satisfies
equation (2.1) and the solution for the perturbed Rytov phase can be obtained as
(DEVANEY, 1986):

ke

Parabolic

=
~ P
\\épproxlmatlon

/ ko

FIG. 2-—Schematic diagram showing wave vector malching for elastic scattering together

with the parabolic approximation to the semi-circular arc in the region of the origin for the

case of incident plane-wave illumination kg = (0,0, k). The shaded arrow is the Fresnel
approximation to the wavenumber component ..
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u (R, 1)

ltlfs(R: 't) = MO(R, l)

(2.20)

= 23 r dR'AR’, /) exp [o(R, D —YoR, Ng(R—R’).  (2.21)

The three terms in the integrand represent respectively the influence of the medium,
the incident beam properties and the propagation behaviour. The first-order Rytov
solution yr, is thus constructed from the Born solution equation (2.12) through the
relation (2.20). Expressions for i, valid in the parabolic approximation are developed
in the Appendix.

For the special case of plane wave illumination, a simple result, analogous to the
diffraction projection theorem [equation (2.16)], follows for the Fourier transform of
the Rytov phase:

We(k,2;2) = Rk, 2IN(K, Q) (2.22)
where
ks .
Rik,;2) = T &P (jk.2) (2.23)

is the Rytov phase propagator. In principle 4 (or Wp) can yield information about
the electron density distribution to a bandlimit 2k,. The condition under which
equation (2.12) and hence the results (2.14) and (2.21) are valid, however, requires
the scattering angles 1o be small enough that the scalar theory is valid. In this context,
the spatially apodizing effects and diffraction of finite diameter probing beams also
need to be addressed. In Section 3 we therefore examine the Rytov phase for Gaussian
beam scattering in the parabolic approximation, It is convenient to use the Rytov
formalism because of the amenable properties of the Gaussian beam Rytov phase
Vg = %o+ jpg in the plane-wave and collimated-beam limits, and because of the
simple relationship between t; and the signals measured using heterodyne and homo-
dyne detection systems. For imaging (or focal-plane) scattering experiments it is
necessary, however, (o first construct an expression for the Rytov phase in front of a
collecting optic.

2.3, Effect of a lens

We consider a lens of focal length ; at distance d; from the disturbance (z = L)
and calculate the field u, in the detection plane z = L+ dy+d, at distance 4, in front
of the lens. The special case when the detector resides in the image plane of the field
diffracted from a thin phase disturbance is illustrated in Fig. 3. For collimated laser
beams and small scattering angles it is reasonable to assume that the optic collects all
of the scattered radiation. The action of an infinite aperture thin lens in the parabolic
approximation is to produce a Fresnel transform
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| kaz=1

Density wave Focal plane

‘-—-——f—-—-—

Fiz, 3 —Schematic rlnmum showing z ecolli tad 3

density wive for the case thn the detector resides in the image plane.

uot(ps Z, t) = J' dp’hd(pls ps d()a dl)“R(P,, La I)- (224)

The lens kernel A, is related to the Fresnel kernel by

ha(p', ps do, dy) = aexp (jd) (e’ —ap,do+ad)) (2.25)

o= 1/{1-d,/) {2.20)
is the lens parameter. Recalling that the propagation of the Rytov field uy = exp

(t/o+ ) 1s governed by the Fresnel integral, and expressing the field in the detection
plane z as u, = exp (Y. +,), comparison of equations {(2.24) and (2.5) reveals that

Y (R, 1) = (R, 1) (2.27)

where
R = (ap, 2+ {a—1)d)). (2.28)

The scaling and quadratic phase terms are absorbed by the unperturbed phase
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Voo = Yot (In a+ j,). The Rytov phase in front of the lens can thus be obtained
from ¥, and the measurement geometry using a linear coordinate transformation.

The character of the “lens” Rytov phase ¢, is determined by o. For example, when
f— oo then a =1 and the lens-free result is recovered. The Fourier transforming
property of the lens for the field in the front focal plane is obtained in the limit
d, =/, o> oo and is discussed in Section 5. Substituting the imaging condition
o= —dy/dy = —1/M gives W, = Yyo(—p/M, L, 1) which is identical apart from
inversion and magnification by M to the Rytov phase in the plane L. Imaging
techniques are particularly useful for restoring near field conditions (see Section 6) at
a remote measurement plane.

3. GAUSSIAN BEAMS
The (Gaussian-beam Rytov phase can be obtained from the plane-wave phase by
means of a coordinate transformation. We assume a probing Gaussian beam coinci-
dent with the z-axis with beam waist located at z,, and take the y-axis {o point in the
toroidal direction. The transverse and longitudinal coordinates are normalized to the
beam waist dimension w, [radius at exp (—1) of the power profile] and Rayleigh
length zz = kow§, respectively

u=2 v =kw, G.1)
Hv’n
z z z L
C=_ '=— (:n:_o = (3-2)
ZR Zgn Zp ZR

Propagating the Gaussian plane wave at the waist position {, to the plane { using the
Fresnel integral allows the free-space field to be written as ugy = exp {(¥go) with
complex phase

a ,
Yoo, ) = cg— “‘; + /kozrl—wol] (3.3)
where
y=1+i{—{o) (3.4)
ady . 1
¢g =In (ﬁ) —jtan” " ({—{o) (3.5)
W[ y]

and the beam power a? is, for convenience, taken as unity. Equation (3.3) is valid
provided the parabolic condition { « (k,swc)z is satisfied. Substituting equation (3.3)
in equation (A.8) for the parabolically approximated y, readily yields the first-order
Gaussian-beam Rytov phase:
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Val,L,1) = oz J a fw T LN (3.6)
with kernel
Dyvi0, 0, 0) = exp {jlu v+ oe(C~ L1} G.7)
where o = —%2 and
B=vly v =1+~ Lo. (3.9)

The two-dimensional refractive index transform has the normalization
N(v;{', 0 = N{k;z, 1)/wj. Analogous expressions to equation (3.6) apply for the real
(amplitude} and imaginary (phase) parts of g with kernels

2%,(v;u,{, L) }_@ VL) T D v u .l 19
2j2,(v;u, g,y J T D F AL O, G2
The kernels fold in effects due both to diffraction from plasma irregularities and
spreading of the finite-diameter probing beam.

The plane-wave Rytov phase ¥, [obtained by inverse Fourier transformation of
equation (2.22)] is recovered in the limit # —» 1. When the interaction region is narrow
compared with the Rayleigh range (/ — 0), the parameter f — f can be taken as
independent of the plasma coordinate {" and g obtained from the plane-wave phase
p through the coordinate transformation :

Yo L, 1) = e (R, 1) (3.10)

where, of course, R = (wyu, z;{). The Gaussian-beam Rytov phase for diffraction
from a thin phase screen and in front of a collecting optic is obtained by combining
equations (2.27) and (3.10):

. (R, 1) = yelafp, fz+ (x—1)d,, 1]. (3.11)

This expression is used below to calculate the scattered signals [rom airborne ultra-
sound for comparison with experiment.

4, DETECTION

We now relate the total Gaussian-beam Rytov phase to the signals registered by
the measuring apparatus. Since ) « @,, measurement of i, requires the carrier
frequency to be down shifted to a range where the sidebands carrying the desired
information are accessible. This is obtained by mixing with a suitable local oscillator
o I a non-linear detecting element, For a ““square-law” detector contained in the
plane z (we assume, for the moment, that there is no lens), the signal resulting from
the sum of the field amplitudes u, = wp+11 o is given by (HOLZHAUER and MASSIG,
1978)



Forward-angle scattering in plasmas 1143
C r [re)

D (1) = ?j dr’f duop (u, Cjlup (u, {, 1)) a0
r—T -

where C is a constant proportional to the detector sensitivity, ¢y, is the aperture
function and 1/7 is the detector bandwidth, We assume a local oscillator related to
the incident field by

uro(u, , 1) = rugo(u, {, ) exp {—/(Quot+ ¢ro)] (4.2)

where r is the ratio of the wave amplitudes, Q,, = w,—w o is the intermediate
frequency (IF) and ¢, is an arbitrary constant phase difference. Suppressing, for the
moment, the explicit spatial and temporal dependences, the signal registered by a
point detector is proportional to the local intensity

iv = lup|* = eg[r* +exp (2ne) +2rexp (xa) cos (96 — Lot — o)l (4.3)

where eq = exp (Ygo+ &) is the beam intensity profile. In the absence of a local
oscillator beam {r = 0, homodyne detection), only intensity fluctuations yg arising
from the diffraction of the phase-perturbed incident beam are observable (e.g.
shadowgraphy, far-forward scatiering). On the other hand, the phase ¢4 can be
determined free of contamination from amplitude fluctuations when either g is small
(and r 2 1) or Q.o » Q where Q represents a typical plasma component frequency.
In the latter case, ¢g can be recovered by standard demodulation techniques {e.g.
CHot et al,, 1986).

For the phase scintillation interferometer {(SHARP, 1983) Q, 5 =0, |xgl, log| « 1
and the fluctuating part of the detected signal [equation (4.3)] is proportional to

5'“u = eg[xa (1 +7C08 ¢r0) + @arsin ¢o). 4.4

The constant relative phase @, is usually fixed at m/2 or 3n/2 to give maximum
sensitivity to the perturbed phase ¢g. Nevertheless, unless either diffraction effects
are small |yg! « |@g| or the local oscillator is strong r > 1, intensity variations can
significantly affect the measured signal. When |@g| is not negligible, but providing the
phase varialion across the beam or detecting element is small, the spatial information
is still carried by a term proportional to ¢g. Since both real and imaginary parts of
¥ Bgure naturally in the Suctuating intensity, it is appropriate to study the properties

of the complex signal
¢ = eglg = ¢y +jc,. (4.5)

Equations {4.5) and (3.11) together allow computation of the spatial evolution of the
complex signal (before and following the action of a thin focussing fens) for Gaussian-
beam scattering from a thin (/ « 1) normally inclined plasma wave. The rea!l (homo-
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AMPLITUDE PHASE

oo I

Plasma Lens Focal Image Plasma Lens Focal [mage
Wave Plane Plane Wave Plane Plane

Fii. 4—Spatial evolution of the real (left side) und imaginary (right side) parts of the
complex signal ¢ = e for Gaussian-beam scattering from a normally inclined refractive
wave having (a) Kwq = =2, (b} kw, = 7 and (¢) Kw, = 2n. A collecting optic occupies the
plane { = 0.5 and the focal and image planes are located at { = 0.75and { = 1.0, respectively.

(R, ) = Ana(z) cos (k- p — Q1) (5.6

where An and a(z") are the perturbation amplitude and z’-distribution and k is the
mean transverse wavenumber. In the absence of a local oscillator beam, the detected
signal is proportional to ¢, = é5%¢. Denoting by ¥ = kw, the normalized wavevector
for the plasma disturbance and & = —#°/2, we obtain for the real and imaginary
parts of ¢

“x.

&y (u.1) = [ dexp [ju ¥ — L)l cos (@ + B)a(l) 5.7

-
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where
- An
Iy =—2—exp( % +5r) {exp (20, ¥) +exp (— 20 - ¥) F 2 cos [26p(0" — )]} 7
(5.8)
are the time-varying signal envelopes and the relative phases satisfy
—exp{—2u-v)
tand, = cot _ =
an cotl(e’~ C")UF l+exp( 2 v)
—ex 2a-v
tanfl, = —tan [({’ Co)br] P(- ) (5.9

l+exp(—2a-v)’

For a sufficiently narrow disturbance a({") - §({"), the results of Evans et al. (1982)
for the homodyne signal are recovered.

When #¢f « 1 (this Raman—Nath limit is discussed more fully in the next section)
the quantities {, — =/2 and 7, can be removed from the integral with the result

¢, (u, ) = I, sin (Qeyexp (—ju-v{)A(—u-¥). (5.10)

In principle, the line-of-sight distribution «@({’) can then be inferred from the
measurements &, (or &,). Practically, however, the required division by the signal
envelope I, is extremely noise prone, and limits determination of a to very low
wavenumbers.

6. NEAR FIELD
We here derive the general form for the transform of the complex signal ¢ = ey
in an arbitrary plane { > { beyond the plasma. The apodizing term is

{
eg(u;y) = s exp (—u?/[y|%) (6.1)

and the Fourier transform C(v;{, ) = C(k;z, n)/w} of the complex signal is given by

’

! 0 d
C{v: (1) = jkozp [dC [ On )QEG(’YV Y¥)exp [—/(C—L)v-v2ING L )

{6.2)
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where

Ec (1) = exp (— |yv|%/4) (6.3)

is the Fourier transform of eg5.

For the standard case of discrete chordal measurements, most of the beam energy
is collected using a focusing lens and sensed by a single detector. Provided that
Agg « 1 over the beam area, the detected signal is proportional to

in(f) = JED duop, (u)c, (u, f). (6.4)

{The contribution from the amplitude perturbations averaged over the beam area can
be shown to vanish.) Assuming that the collecting aperture oy, is large compared with
the beam dimensions we can write with little error

in(1) = R[C,(0;L,0]

—k rdcr I N0 Bl 6.5)
= KpZgr . . (n )2 v; ) Eg(y'v) (6.

where C, is the anti-Hermitian part of C. Because of the diffraction of high-k
information the probing beam acts as a low-pass filter for transmission of line-
integrated refractive index information. When the plasma occupies the region within
a Rayleigh length of the beam waist (collimated beam), the filter bandwidth is approxi-

mately enatially invariant {~ 2/ and the conal he avnreceed ac [of eanatinon
lll(ll,\.l)l DlJCILlClllJ Hivaliiaiii \"‘"4-,‘ ¥ 0) CL1IM LLlNw Dlsllal \.,au (9. W) UA}JI\JDBLU ad l\.;l L;LlI.I.CIIJUlJ

(6.12)]

£
;D('t) = _re)“OJ dz’ﬁe(oa zla f) (6'6)
Q

where A.(0,z",7) is the filtered electron density on axis of the beam. Observe that
this result is valid throughout the propagation region beyond the plasma. 1t would
appear that an approximately bandlimited projection of the plasma can be obtained
using a set of sufficiently closely spaced discrete probing beams. This principle is
exploited in a scanning interferometer arrangement reported by Howarp (1990).

We now consider the case when measurements are made within the collimated beam
profile as with scintillation and phase contrast, orimaging interferometry experiments,
For collimated beams, second-order terms in £ and £ are neglected [this is a weaker
condition than that leading to equation (3.10) where first-order terms in / are ignored].
This allows Eg(yvy—7'¥) = Eg(¥—¥’) to be removed from the {’ integral :

(¢} z

i )2Ec(v V)J.dC exp [~ HE= v v2INGK, T ).

Cv:;i,n ‘—“jk()zkj

6.7)
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The Gaussian function significantly weights the integral for wavenumbers |v —v| < 1.
For values of v’ satisfying this inequality the complex exponent can be approximated
by noting that v-v' &~ v? provided that |[v* (v—v')| < olv—v'| < v « v? where v = |v|.
The final inequality requires the expanded beam waist to be much wider than the
transverse scale length of the density variation. We refer to the region ol = kgz « 1
as the Gaussian near field. This is distinct from the near field which satisfies
viJ2 = |ky|z « 1. Physically, the condition of = kgz ~ z/(zgz¢)"? « 1 requires
substantial overlap of the main beam and diffracted orders as indicated in Fig. 3.
In the Gaussian near field of an expanded beam, equation (6.7) becomes

C(v, Q50 = Ao (vr; HYN(Ve, ) (6.8)

where Vi = (v, vp) and N = (N Eg)/(27)? is proportional to the two-dimensional
convolution of ¥ with Eg. The paraboiic approximaiion to the Gaussian-beam Rytov-
phase propagator is given by [cf. equation (2.23)]

R (vr ;L) = jkozg exp (joel). (6.9)

In the spatial domain, the measured signal is proportional to the plane-wave Rytov
phase weighted by the Gausian-beam intensity profile [cf. equation (2.22)j. For
separable N(v; ', 1) = N'(v; Ha{{’) and provided v >» 1, equation (6.7) becomes

C(vi0, 1) = Ralor; DN (v; HA(ve) (6.10)

where N’ = (N"* Eg)/(2r)? is defined analogously to N and A(v¢) is the Fourier
transform of a({"). Knowledge of N’ then allows a({’) to be determined 1o a band-
limit such that division by N’ does not prohibitively amplify noise on the measured
spectrum C.

Let us consider the case of a quasi-monochromatic denstty perturbation pro-
pagating normal to the laser beam. As indicated schematically in Fig. 5, the spatially
localized beam presents a spread of incident wavenumbers Ak, ~ 2/w, that sample the
source transform over the range Ak, ~ (K/ky)Ak,. The scattered waves are conveyed
according to the strength of the transform N (K, 2) at the intersection with the circular
arc defining the locus of allowable scattered wave vectors. Since the spectral width
Ak, ~ 2n{L represents the minimum distance over which A4 can change significantly,
the narrower the structure the greater will be the range of its transform in the &,
direction. It is therefore sufficient that the Klein—Cook parameter (KLEIN and Cook,
1967) @ = |kg|L be small for the density wave to be sensed by the probing radiation.
This is ensured when the phase screen is sufficiently thin {(Raman-Nath regime).
Otherwise the incident beam must be inclined in order that k-matching be satisfied
(Bragg regime). Determination of A4 to the bandwidth Ak, requires (K/ko)Ak, = 2x/L.
Since the beam is collimated (L « zg) we therefore have 1 « Kw, < Q so that, for
collimated beams, the scattering must be performed in the Bragg regime in order that
the z-distribution of the source be recovered.

In the geometric optics limit we approximate #q(ve; {) & jkozg (1+/vel). Since
{ > I, the geometric optics limit implies Raman—-Nath diffraction where the transform
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FiG. 5.—Schematic diagram showing satisfaction of the k-matching condition for Gaussian-
beam scattering from the guasi-coherent plasma perturbation whose domain in the Fourier
transform plane is shaded. An incident k-spread Ak, maps the transform over the range Ak,.

N can also be approximated to first order :

1

N(Vi, Q) zf A (L—jorl YN, Q5 0). (6.11)

0

With these expansions, inverse Fourier transformation over v and € gives

L

C "N’jcw(p/wo-: t) = _jrc'{(leG (p/w[) s ”V) J\ dZ’ﬂe (p: Z,: t) (6 1 2)

0

where higher-order terms have been neglected. The result is valid in the Rytov approxi-
mation which, assuming the medium varies smoothly, can be written as ¢ « kL
where the right-hand side is the phase shift of the unperturbed wave. In absolute
terms, the phase ¢¢ can be large. Gaussian near-field and geometric optics conditions
can often be ensured using imaging techniques (HUGENHOLTZ and MEDDENS, 1982 ;
YOUNG er af., 1984, HOWARD er al., 1987 ; NAZIKIAN and SHARP, 1987). When the
beam is allowed to frecly propagate before being sensed by an array of detectors {e.g.
PEEBLES er af., 1987 ; KiM ef al., 1988) however, the effects of propagation (#¢) must
be carefully assessed (HOWARD et al., 1990).

6.1. Diffraction from waves
To compare with the results of scintillation experiments presented in Section 7, we
apply equation (6.7) to obtain the near- and intermediate-field behaviour for laser
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diffraction from density waves. We assume the sound field takes the form of equation

(5.6) with ¥ = kw,. Substitution into equation’ {6.7) and separating ¢ into real and
imaginary parts gives

t
czg(u, 0= J dC’a(C’)Ié cos (Qt+03§) (6.13)

0

where

A
Iy = Srexp [—u® = ()} fexp (- 5)
Fexp (= 2fu-DF2c0s 2B, F(C-LN} 2 (6.14)

_cos(u,)—exp (2fu-v)cos (u_)
7 sin(uy ) +exp (2w ¥) sin (1)

sin (v, )—exp(2fu-¥)sin (u_)

tan #

tan 6, = - cos (1, ) +exp 2Bu-¥ycos (1) (6.15)
with
B=p+jpi
uy = fop({—{)—pu-v. (6.16)

In the far-field limit, and with the identification & = { —{’, equation (6.13) reduces to
its Fraunhofer counterpart equation (5.7) (see also the Appendix).

For a collimated laser beam f— 1 —j{{—{") and for a localized perturbation
(L « zg), the above result reduces to a simple form obtainable directly from
equation (3.10), For the Gaussian amplitude distribution

a(z) = 2m)~ "exp [—z}/(2LY)] (6.17)

(L « zg) and monochromatic sound field k = (%, 0) [see equation (5.6)], it can be
established that

¢ = egtp = jDeg(u;y) exp (— Q°/2) cos (Gu— Q1) exp (jir) (6.18)

where @ = k,LAn = — Ayr LAn, is the absolute phase perturbation. Using the above,
we can readily obtain explicit expressions for the heterodyne and homodyne signal
envelopes and relative phases for comparison with experiment. Finally, for a thin
phase screen (Q <« 1), the real part of equation (6.18) reduces to the near-field
expression obtained by JaMEs and Yu (1985) for Gaussian beam scattering from
wWaves.
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7. SCINTILLATION EXPERIMENTS

The scintillation diagnostic is a high-sensitivity Mach-Zehnder imaging inter-
ferometer that operates in the near-field (Raman-Nath) regime and is specifically
designed for the detection of high spatial and temporal frequency plasma density
induced phase and amplitude fluctuations. The instrument uses an expanded Gaussian
beam (wo ~ 10 mm) of 10.6 um radiation for heterodyne and homodyne scintillation
measurements of airborne ultrasound. The measurement systermn layout is shown in
Fig. 6.

The optical system (consisting of a 10 W gas-discharge CO, laser, beam-expansion
optics and interferomeler components) is mounted on a massive marble table and the
sound source is a standard tweeter (cocled to —5°C) driven by an audio amplifier
(300 W rms). Anti-reflection-coated 7.5 cm diameter ZnSe 50% beamsplitters are used
to separate and combine the probing and local oscillator beams. The local oscillator

i thus nominally identical to the nrohine heam anart from a2 cangtant nthace offcet
18 ally waenlical Lo 1he probing peam apart {rom a constant phase otiset
4 ™\

Computer
Sweep Vector
Generator Analyzer
Power
Amplifier Preamplifier

Detector
300 pm?

Loudspeaker

Sound waves
8 5-100 kHz

AR:50% Zn-Se
Beamsplitter

10 W COQ; Laser PZT
L /

F16. 6 —Schematic diagram of scintillation intcrferometer for ultrasonic wave measurements.
PZT denotes the peizo-driven mirror used for fixing the relative path lengths between the
interferometer arms.
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held at ¢, = 7/2 by the peizo-controlled mirror in the interferometer reference arm.
The Rayleigh length z; ~ 40 m is much greater than the sound screen thickness
L ~ 0.005 m so that the Rytov-phase perturbation is given to sufficient accuracy by
equation (3.10). The perturbed field propagates to the detector plane located at a
distance z = 2.10m from the interaction region. Up to two Fresnel zones are accessible
by scanning the sound frequency from 5 kHz to a maximum of 100 kHz. On the other
hand, the sound field remains strongly Raman-Nath even at the maximum sound
frequency {0 = {kelL ~ 0.15).

A single Hg—Cd-Te detector of dimensions 300 x 300 pm (located on the axis of
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Fresnel parameter 0p(

Fii. 7 (a)-(c).—The experimental (dotted) and computed (solid) ratios of the heterodyne
and homodyne signals versus the Fresnel parameter J = v:{ for detector positions x =0, 3
and 6 mm from the Gaussian-beam centre,
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the beam) is used for these measurements. Using synchronous detection techniques
(integration time 1 s), the interferometer is capable of sensing phase shifts as small as
~ 1077 radians. The homodyne and heterodyne signal amplitudes are measured in
turn and digitized for later processing by computer.

As noted above, the Fresnel parameter & is varied by changing the frequency of
the sound waves. The experimental points and theoretical curves for the variation of
the ratio of heterodyne and homodyne signal amplitudes with 6p{ measured at x = 0,
3 and 6 mm from the beam centre are shown in Fig, 7. The ratio is taken (o remove
the dependence on the system frequency response. The decrease in signal-to-noise
ratio at higher @ values is due to the decrease by an order of magnitude in speaker
efficiency. The nominal experimental parameters are : sound speed C, = 330+5ms™',
r=1.0+£0.03, ¢15 = —90°+5° wy= 1141 mm and z = 2.104+0.02 m. Systematic
discrepancies are possibly attributable to a small mismatch of local oscillator and
probe beams. We also note that a slightly closer fit with experiment can usually be
obtained by the appropriate choice (within the quoted uncertainty bounds) of the above
parameter values. The sensitivity to screen thickness L and waist position z, {within
a Rayleigh range) is, however, weak.

The general agreement over three orders of magnitude confirms the functional
behaviour described by equation (6.18). The variation with x highlights the importance
of finite beam effects for high-resolution near-field scattering measurements. Based
on the measurements of Fig. 7(a) we conclude that near field (vgl < 1)} measurements
of the complex signal should be sufficient to locate a narrow, coherent source with an
accuracy of ~ 5%, Experiments examining other parameter dependences, and in
which both phase and amplitude response are measured, are underway.
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APPENDIX : DIFFRACTION PROJECTION THEOREM AND THE
PARABOLIC APPROXIMATION
The diffraction projection theorem (WOLF, 1969) is the reciprocal space solution to the inhomogencous
wave equation in the first Born approximation. For the special case of plane-wave illumination, and in the
limit of zero wavelength, the result reduces 1o the well-known “‘central slice” theorem for non-diffracting
tomographic imaging. The proof of the theorem, which we sketch below, rests on the assumption that the
scallering is weak in the Born sense. More comprehensive treatments are given by Worr (1969), MUELLER
et al. {1980), Kax {1935) and Devaney {1936).
The Green'’s function is the spherical-wave solution to the wave equation for a point source. The spherical
wave has the plane-wave decomposition [Banos, 1966 ; ¢f. equation (2.6)];

g(R~ R')——’J Gy, P Uik (0= ) ez 2l (A.D)

The ubove expression for g is inserted into equation (2.12), and since f,is zero for z > L, we replace [z—z'|
by z—z' to obtain after some rearrangement

zn

“s(R,f)=J-[‘ (2) exr)(ﬂc R)'[ dRfo (R, f)exp (—jr- ). (A.2)

Recognizing the rightmost integral as the Fourier transform F, of the scattering potential, the scattered
field can be more compactly expressed as

ﬂ.w
RN =
it ;

JJ (27 'k,

Fourier transformation over p and ¢ yields the desired result (2.14).

In the parabolic approximation #, can be cast in a Fresnel integral form similar to equation {2.5) for the
frec space field, We prefer, however, 1o represent the scattered field as the superposition of beams identical
to the incident field but diffracted from the medium at angles determined by the spectrum of the scatterer,
In the parabelic approximation the trajectory of the planc-wave component (0,0, ko) of the incident field
diffracted from the perturbation Ky = (k, ki) is

k
p’=p—-k-’—;(z—z’) (A.4)

where z* is the coordinate in the plasma. Applying the convolution theorem in equation (A.2) isolates the
three-dimensional Fouricr transform U/, of the incident field ;

dKdew
e

u(R, 1) =jk"[ NK, Q)'[” exp (- R—wd)] Ug(k—K). (A.5)

de,
{2n)’k,
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Substituting for £/,
Ug(K) = 2mAo(ky; 0)o[x, — (k2 —x) '], (A.6)

transforming to trajectory coordinates p” and integrating then gives (NAZIKIAN, 1989)

& d
(R, :)uf f (; );exp(ﬂc e (b 2= ZINK, Q3 2 ugp Dexp (—jor) (AT

where Nk, Q; ) is the 1-D>» inverse Fourier transform of A(K, ) and 2 is the parabolic approximation
to the planc-wave propagator # [equation (2.23)]. This shows that for each density spectral component
Nk, £2; 2) there is a diffracted wave ug(g’, z) exp ( —jmr), identical in form to the incident field, and that

the field u, is the propagation-weighted superposition of all such contributions. More importantly, the
result provides a useful representation for the Rytov phase:

L = g
MR,!)=J; dZ'[ (—2—:)76)(;3(jx'p)Q?F(k}-;z—Z’)N(k;zt Qexpfole, D) —volp, 2. (A8

The Gaussian-beam Rytov phase ¥ is obtained easily on substitution for the unperturbed phase g, from
equation (3.3). The expression alse has some nice propertics that facilitate calculation of ¥, in the lar-field
limit.

Transition 1o the far field
Equation (A.8) can be recast in the form

L -] dK .
¥.(R 1) J dz’exp (jo ﬂzfz)f e L (—jo*p /2N (k2. nexp [folp’, 2) —alp, 2)]
(AM
where &2 = ky/(z—2z). For the plane wave (0, 0, k), the final term is unity. In the far field, 62 =~ k,/z = 0

and the complex exponential in the second intcgral tends to the impulse — 27 j5%3(p) (ParOULIS, 1986)
with the result

\ES(R! 1) = illm !fl,(R, {)

5

|

= r.[ dz'a’exp (jolp ) N{c p; 2, 1). (A.10)

0

Retaining terms 62 = (1+2/z}k,/z in the exponent and taking a? ~ k,/z elsewhere, we finally obtain
PR, 1) = re(p, 2)N Ky 5 1) (A.11)

where, with the correspondence k = (k,/z)p, K; is the Fresnel wave vector introduced above, and

re(p,2) = ko exp (—jkoDhe (p, 2) (A.12)

is the Fourier transform of the parabolic plane-wave propagator #,.
For Gaussian beams, and in terms of the dimensionless quantities introduced in Section 3, the Rytov
phase is given by

! o dv
llfs(".C-f)2.fanuJ;di'explﬁﬁz(C—C')ﬁ]J: WEXP[—ﬁ(ﬁ—V)z(C—C')ﬁ]N(V;C',f} (A.13)

where

=
1

(A.14)

g
|
b
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is analogous to the focal-plane coordinate defined in Section 5. Performing the { integration in the far-
field limit, we find

_ * dv - _
VU R EjkqueXp(?ouzﬂ)J. WEXP[—%(H—V)%]N(W —iv—up;t) (A.15)
where, as usual, v, = —v*f2. With the correspondence s = ¢, the far-field and focal-plane expressions for

the complex signal ¢ = eg\, are identical.



