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We characterize a process of energy extraction via rectification of strongly turbulent flow by using tools
of stochastic thermodynamics. We study the dynamics of an asymmetric autonomous rotor that shows
biased direction of rotation when placed in a stream. We give experimental evidence that a fluctuation
theorem can be used to describe the work injected in the rotor via its coupling with the turbulent flow
structure. This approach allows to measure the mean power extracted from the chaotic fluid motion over a
broad range of turbulent kinetic energy. A nontrivial dependence of the rotor power on flow kinetic energy
is identified. This observation is described by a model taking into account the dissipation of the rotor
energy and the temporal memory of coherent structures present in the turbulent flow.
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The conversion of the kinetic energy of a flow into useful
work constitutes a central problem of fluid mechanics that
can benefit many applications in the area of renewable
energy, such as wave and wind energy, as well as in biology
[1–7]. To operate efficiently, many energy converters rely
on a steady flow component dominating the fluid dynamics
(driven by a sustained wind or regular wave) [2,8].
However, natural flows present a substantial level of
turbulence and therefore they fluctuate over a broad range
of time and length scales. The impact of turbulence on the
power harvested from the flow and on the energy loss by
conversion systems remains an outstanding fundamental
question [2,8–10]. The utilization of fluid kinetic energy is
particularly difficult when turbulent fluctuations are acute
on a timescale comparable to the response time of the
converters. Another recurrent problem is related to the
complex spatial structure of turbulent flows, in particular
the presence of coherent structures that are either inherently
present or generated in the wake of neighboring converters
[9,11–18]. It is therefore important to devise model experi-
ments to bring insights into these problems.
In this Letter, we experimentally study the power

extracted by an autonomous rotor from a strongly turbulent
flow [19]. These flows show no steady velocity component
and include coherent structures. In this system, the key to
the extraction of useful work is the efficient coupling of the
rotor with the Lagrangian structure of the flow [19–21].
Important features of the process of energy extraction from
this strongly out-of-equilibrium flow have not been
explored yet. In particular, the torque acting on the rotor
was not measured, and consequently the power extracted
from the turbulent flow could not be characterized. Here,
we take advantage of tools developed in stochastic thermo-
dynamics to measure these quantities.
The framework of stochastic thermodynamics offers

noninvasive tools to characterize the work generated by

out-of-equilibrium systems in contact with an energy
reservoir [22,23]. Seminal works have shown that theo-
retical relations, known as fluctuation theorems (FT), can
be applied to study fluctuations in turbulent flows [24,25],
liquid crystal electroconvection [26], mechanical waves
[27], or ratchet effects in granular media [28,29]. Yet the
use of FT to describe chaotic dynamics in macroscopic
systems remains scarce, and therefore most of its potential
applications remain to be explored. Here, we show that an
FT can be applied to the work extracted by turbulence-
driven rotors. The FT allows a noninvasive characterization
of the rotor power that is shown to have a nontrivial
dependence on the flow kinetic energy.
In these experiments, turbulent flows are produced

at a liquid surface perturbed by parametrically excited
Faraday waves. The waves are generated in a circular
container (diameter ¼ 290 mm) filled with water up to its
brim (water depth ¼ 85 mm). The container is vertically
vibrated at a frequency of fs ¼ 60 Hz, and the acceleration
takes values from 0.5 g to 1.2 g. Although energy is
injected into the vertical oscillations of Faraday waves, part
of this energy is converted into chaotic horizontal fluid
motion via the generation and nonlinear interaction of
horizontal vortices [30–35]. The size of these vortices
determines the flow forcing scale, Lf ¼ 4.4 mm at
fs ¼ 60 Hz [36,37]. The wave-driven turbulent motion
is random, with no mean flow component, and it shows
Gaussian velocity fluctuations. The rms velocity U of these
fluctuations depends on the kinetic energy accumulated
over a broad range of scales by a process referred to as the
inverse energy cascade in the context of 2D turbulence
[30,31,36,38–40]. A characteristic time of the flow is the
lifetime of its Lagrangian coherent structures given by
TB ≈ 30 × Lf=U, and it is in the range of 2 s < TB < 20 s.
The rotor is made of thermoplastic (ABS) and printed on a
3D-printer. The density of the ABS matches that of water;
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hence, the rotor is neutrally buoyant. The rotor is an
asymmetric floating object made of two L-shaped arms
[see schematics in Fig. 1(a)]. The rotor has a 50 mm
wingspan, a 5 mmwidth, and a 0.4 mm thickness. Its lateral
arms are 25 mm long. The rotors are printed with a 3-mm-
diameter hole at the location of the axis of rotation; an
externally fixed 0.5-mm-diameter needle serves as the
pivot. In this configuration, there is almost no friction
between the floating rotor and the pivot axis.
Due to its asymmetry, the rotation of the rotor is biased in

one direction. As demonstrated in [19], this direction is
determined by the force originating from the rectification of
the flow inside the L-shaped arm. We study the dynamics
of the angular velocity ω ¼ ∂θ=∂t of the rotor as a function
of the turbulent flow energy U2. The angular position θ of
the rotor is recorded by a camera at a frame rate of 105 fps
during 20-minute-long experimental runs. Large data
samples allows us to characterize with great accuracy the
mean angular velocity hωi and the angular velocity
fluctuations δω ¼ ω − hωi, where hi denotes statistical
averaging. The present analysis is performed on data
collected after the system has reached a steady state when
hωi is steady in time. Figure 1(a) shows that the mean
angular velocity hωi is a linear function of the flow rms
velocity U. The probability distribution function (PDF) of
ω is plotted in the inset in Fig. 1(a). The PDF is well fitted
by a Gaussian distribution with strong fluctuations around
its mean and a variance hδω2i, which increases with the
flow energy. In terms of energy conversion of a flow, rotors
operate in an interesting regime; indeed, rotors extract
energy from Lagrangian coherent structures whose char-
acteristic size has to be smaller than the rotor span [19] and
that have a characteristic lifetime much smaller than the
rotor rotation period (hωi < 2π=TB, the dynamics of the
rotor is much slower than that of the flow). The Reynolds

number of the rotor is in the range (1–20). These seemingly
intermediate values actually correspond to fully developed
2D turbulence [31,41–43].
To further characterize the rotor dynamics, we compute

the temporal autocorrelation function CðΔtÞ of the fluctu-
ations δωðtÞ as follows: CðΔtÞ ¼ hδωðΔtÞδωðt0Þi=hδω2i,
where Δt ¼ t − t0 is the time interval. As shown in
Fig. 1(b), the autocorrelation function CðΔtÞ is strongly
dependent on the flow rms velocity U. It decays faster with
the increase of U. Moreover, it exhibits strong oscillations
that are dampened only after several seconds at low value of
the flow energy. This behavior reflects both the importance
of inertia in this system and a strong coupling of the
rotor with the turbulent flow [19]. We also compute the
integral time τc as τc ¼

R∞
0 CðΔtÞdt. The timescale τc is a

decreasing function of U [see Fig. 1(c)]. One can see that
τc ∝ 1=

ffiffiffiffi
U

p
.

The mean angular velocity hωi is constant in time.
This suggests that the rectification phenomenon can be
described by a constant torque P acting on the rotor. The
work done by the torque over a time interval τ corresponds
to the energy Wτ extracted from the turbulent flow by the
rotor. It is given by WτðtÞ ¼

R
tþτ
t PωðtÞdt ¼ PΔθ, where

Δθ ¼ θðtþ τÞ − θðtÞ is the angular displacement over a
time interval τ. To characterize the work, we need to
measure the torque P. To achieve this, we test the existence
of an FT for the fluctuations ofWτðtÞ [23] by looking for a
relation in the following form:

S¼ ln

�
HðWτÞ
Hð−WτÞ

�

¼ ln

�
HðΔθÞ
Hð−ΔθÞ

�

¼ βΔθ; τ> τc; ð1Þ

where HðWτÞ is the PDF of Wτ. Most importantly, the
measurement of β will allow us to determine the torque P.

��
�(a) (b) (c)

FIG. 1. (a) Mean angular velocity hωi of the rotor versus the flow rms velocityU. Inset: Probability distribution functions of the angular
velocityωmeasured at different rms flow velocities (U1 < U2 < U3) in the range of 0.001 < U < 0.03 ms−1. In the lower right corner, a
schematic of the rotor shows its geometry, its axis of rotation (blue dot), and its direction of rotation (red arrow). (b) Temporal
autocorrelation functions CðΔtÞ ¼ hδωðΔtÞδωðt0Þi=hδω2i measured at different levels of turbulent intensity (U1 <;…; < U5) in the
range of 0.001 < U < 0.03 ms−1. (c) Integral timescale τc versus the flow rms velocityU. The dotted line indicates a τc ∝ 1=

ffiffiffiffi
U

p
scaling.
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Figure 2(a) shows the behavior of S as a function of Δθ
for different values of τ. The function S increases linearly
with Δθ for all values of τ, i.e., SðΔθÞ ¼ bðτÞΔθ. For
values of τ larger than τc, the functions S collapse onto a
single line. This collapse is characterized in the inset of

Fig. 2(a) by measuring how the slope b of S depends on τ: b
decreases with τ until it plateaus at a value β for τ > τc. The
dependence of the parameter β on the turbulent flow energy
has been tested over a broad range of turbulence intensities.
Figure 2(b) shows that β decreases with the increase of the
flow velocity U. The behavior can be fitted by β ∝ 1=

ffiffiffiffi
U

p
.

Analogies with experiments performed on microscopic
rotating systems [23] suggest that β should be related to
the torque P via the relation β ¼ P=Er, where Er is a
characteristic energy that plays the role of an effective
temperature. In the case of microscopic rotors, Er is the
temperature of the thermal bath Er ¼ kBT [23]. In our
macroscopic system, fluctuations are produced by the
turbulent dynamics and not by thermal noise. In this highly
nonequilibrium context, a challenging problem lies in
determining the energy scale Er [22]. A possible choice
for Er is the energy of the angular velocity fluctuations
Jhδω2i, where J is the moment of inertia of the rotor.
The energy of angular velocity fluctuations is linearly

proportional to the turbulent flow energy Er ∝ U2 as seen
in Fig. 3(a). This indicates that the flow kinetic energy
can be used as the characteristic energy scale in the FT.
Figure 3(a) shows the value of the torque derived from
P ¼ β × Er. Note that P strongly depends on the flow rms
velocity and that it follows a scaling P ∝ U1.5.
Wave-driven turbulent flows are fueled by the vorticity

generated by the waves at the fluid surface [30,44]. It has
recently been reported that turbulence does not invade the
entire fluid bulk but remains localized in a 2-mm-thick
layer near the fluid surface [45]. While the previous results
concern the dynamics of thin rotors whose thickness is
0.4 mm, we now investigate the behavior of a 2-mm-thick
rotor that will strongly interact with the turbulent boundary
layer. The mean angular velocity hωi of thick rotors is
proportional to the flow velocity U. The function S of thick
rotors is linear in Δθ, and it collapses on a unique curve for

(a)

(b)
��

�

�
�
�
�
�
�

FIG. 2. (a) Functions SðΔθÞ versus angular displacement Δθ
for increasing values of the time interval τ (at fixed flow
rms velocity U ¼ 0.015 m s−1). Inset: Slope b [defined as
SðΔθ; τÞ ¼ bΔθ] as a function of τ. (b) Parameter β versus the
flow rms velocity U. The dotted line indicates a β ∝ 1=

ffiffiffiffi
U

p
scaling.

(a) (b)

(c)

�

��

FIG. 3. (a) Energy Er ¼ Jhδω2i of angular velocity fluctuations and torque P acting on the thin rotor versus flow rms velocity U.
The torque is derived from the relation P ¼ β × Er. (b) Energy Er and torque P measured for a thick rotor as functions of U.
Inset: Parameter β, measured for a thick rotor, versus U. (c) Torque P ¼ β × Er as a function of the model Pd ¼ Jhωi=τc.
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large values of τ. This allows us to measure the parameter β,
which is constant over a range of the rms flow velocities
[see inset of Fig. 3(b)]. The change of thickness of the rotor
also affects the energy of angular velocity fluctuations. As
shown in Fig. 3(b), the dependence of Er on the turbulent
flow energy is modified, and we observe Er ∝ U. These
two results have an impact on the measurement of the
torque via the relation P ¼ β × Er. Figure 3(b) shows that
P ∝ U for thick rotors. The energy extraction process
depends on the rotor thickness.
To gain further insights into this effect, we now compare

the torque P measured via the FT with the value predicted
by a simple model. In the latter, the torque P is balanced by
a linear drag Pd ¼ Cdhωi, where Cd is the drag coefficient.
The dissipation in our system can be characterized by the
integral time τc derived from the autocorrelation function of
δω. Indeed, the drag coefficient can be estimated as
Cd ¼ J=τc. In contrast to the thin rotor, the timescale τc
of a thick rotor is independent of the flow energy, and
τc ¼ 0.25 s. This impacts the drag coefficient, which is a
function of the flow energy Cd ∝

ffiffiffiffi
U

p
for a thin rotor while

it is a constant for a thick rotor. Figure 3(c) confirms that the
measurement of the torque P is equal to the estimate of Pd.
This is observed for both the thin and thick rotors over a
broad range of turbulent flow energies. This suggests that
the dependence of the torque P on the rotor thickness [see
Figs. 3(a) and 3(b)] is related to the drag coefficient Cd, i.e.,
to differences in the dissipation of the rotor energy.
We can now measure the work and the power extracted

by the rotors from wave-driven turbulence. The inset of
Fig. 4 shows a typical dynamics of the work W10τcðtÞ
produced by a thin rotor over time intervals of 10τc. The
work fluctuates strongly with time around a negative mean
value (negative values correspond to extracted energy).

Quantitatively, the rms value of the fluctuations is four
times larger than the mean value. The mean power Π is
estimated as Π ¼ P × hωi or similarly Π ¼ Cd × hωi2.
Figure 4 shows that Π depends strongly on the turbulent
flow energy. Although thicker rotors extract larger power
than thin rotors, the scaling exponent of Π with the flow
velocity U is larger for a thin rotor Π ∼U2.5 (while Π ∼U2

for thick rotors). Since hωi ∝ U for both rotors, this
difference in scaling is related to the dependence of the
drag coefficient Cd on the rotor thickness. In [45], it is
shown that the structure of the turbulent boundary layer
below the surface is substantially different from that of the
flow at the fluid surface, that is, only large and slow
turbulent eddies persist in the fluid even few millimeters
below the surface. The interaction of the rotor with this
depth-dependent flow structure is clearly not trivial and
deserves further characterization as a function of the rotor
thickness t and boundary layer thickness Lb. The results
presented here suggest that the ratio t=Lb mostly affects the
dissipation process (i.e., Cd), while the propulsion velocity
(i.e., hωi) seems independent of it. To further characterize
the energy extraction, we performed additional experiments
in which an optical fiber cantilever was connected to one of
the rotor arms. As it deforms, this cantilever exerts an
elastic force on the rotor [46,47]. We found that a large
amount of the rotational energy of the rotor can be directly
converted into useful work; in this case the elastic energy
stored in fiber deformations.
The two scaling laws for Π are different from the classic

relation Π ∝ u3 used for the power generated by a turbine
placed in a steady stream flowing at constant speed u. The
origin of this difference lies in the operational principle of
autonomous rotors. The key ingredient of the rectification
phenomenon is the coupling of the rotor to riverlike
coherent structures present in wave-driven turbulence
[19]. In a nutshell, the corner of the rotor acts as a
stagnation point for the flow, which forces a river to bend,
thus creating a reaction force acting on the rotor’s corner.
The rivers have a finite lifetime TB that is a function of the
flow rms velocity TB ∼ 1=U [21]. On the basis of the
phenomenology introduced in [19], the rotor power can be
described as Π ¼ ρKUðU2=LfÞfðTB; τcÞ, where ρ is the
fluid density, K is a geometric factor, and U2=Lf is the
centripetal acceleration characterizing the bending of rivers
in the rotor’s corner. The function fðTB; τcÞ is the coupling
factor between the flow fabric and the rotor. The coupling
factor has to reflect both the river’s lifetime TB and the
dissipation of the rotor energy via the timescale τc. The
simplest choice is f ¼ TB=τc, and the dependence of Π on
the flow velocity is given by Π ∼U3 × TB=τc. The model
predicts Π ∼U2.5 for thin rotors and Π ∼ U2 in the case of
thick rotors in agreement with our measurements.
In conclusion, a fluctuation theorem can be used to

characterize the work extracted by turbulence-driven rotors.
The experimental results highlight that the process of

�

�c

FIG. 4. Mean power Π extracted from turbulence by thin and
thick rotors. Inset: Dynamics of the work W10τcðtÞ extracted by a
thin rotor over time intervals of 10τc at U2 ¼ 2.2 × 10−4 m2 s−2.
The blue dashed line indicates the average value hW10τci
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energy extraction via rectification of turbulent fluid motion
relies on both the dissipation of the rotor energy and on the
characteristic lifetime of coherent flow structures.
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