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Passive propulsion in turbulent flows
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The ability of a device to exploit the energy of a flow to generate thrust is the main
feature of passive propulsion. In a turbulent flow, such energy conversion is challenging
due to the unpredictable and disordered fluid motion. In wave-driven turbulence, it has
recently been demonstrated that asymmetric floating rotors can tap the energy of ambient
fluctuations to fuel directed rotation. Here we report on the dynamics of asymmetric float-
ing vehicles capable of passively propelling themselves in two-dimensional turbulence.
We show experimentally how the shape of a floater and its rotational dynamics conspire
to allow harvesting energy of the turbulent fluid motion. The translation and rotation of
the floater are shown to be strongly coupled. The propulsion velocity and the rotational
diffusion timescale depend on the relative size of the floating vehicle with respect to
the turbulence forcing scale. The geometry of the floater is investigated in the range of
circular-sector-shaped objects and a shape optimizing its propulsion is identified. At times
larger than the rotational diffusion timescale, our results shed light on a substantial increase
of the turbulent diffusion coefficient of anisotropic objects due to the coupling between
propulsion and rotational diffusion.
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I. INTRODUCTION

The generation of thrust in a fluid flow is an important problem in fluid mechanics with many
applications in aerodynamics, wind and wave energy, as well as biology [1–7]. Propulsion in a
flow can be achieved via various mechanisms which are broadly classified as active or passive to
distinguish whether or not it involves the use of the internal energy of a device (by heat engines,
electric motors, etc.). Passive mechanisms are usually hard to characterize because they rely on
a complex fluid-structure coupling [3,8–12]. There has been research into the passive generation
of thrust by a foil in various flows [13,14]. This topic also resonates with research carried out
on the hydrodynamics of aquatic creatures where passively generated thrust (with no muscular
activity) is referred to as passive swimming [8,14]. The advantage of passive over active propulsion
mechanisms is that no energy needs to be expended by the swimmer to generate locomotion. An
interesting aspect of passive locomotion concerns the ability of an object to efficiently propel itself
in the presence of unsteady flows, in particular turbulent flows [14,15].

The description of passive propulsion in turbulence remains an open question which requires
insights from experimental studies. A better understanding of the phenomenon relies on the detailed
knowledge of the coupling of passive objects with turbulent flows. The dynamics of passive objects
advected in any flow depends on the object density, its size, and its shape. The description of this
dynamics is particularly challenging in turbulent flows. Recent experiments clarified some important
features of the turbulent transport of inertial and/or anisotropic particles [16,17]. In wave-driven
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two-dimensional turbulence, a floating object can exploit the fluid erratic motion to fuel either
directional propulsion or rotation [18]. It was shown that wave-driven turbulence possesses an
underlying fabric which consists of riverlike structures [18–20]. The motion of a floating object
can be strongly coupled with this flow fabric, if its shape is asymmetric. It was demonstrated that
the kinetic energy contained in the turbulent eddies can be rectified to power either a chiral rotor or
a self-propelled asymmetric vehicle. The case of a turbulence-driven rotor has been studied in detail
in Ref. [18], while the case of self-propelled objects remains unexplored.

Here we report on asymmetric objects capable of passively propelling themselves at the air-
water interface by tapping into the energy of wave-driven turbulent flows. It is shown that the key
mechanism behind the turbulence-driven propulsion is the coupling between the translation and
rotation of the object. More precisely, we demonstrate experimentally how the asymmetric shape
of an object and its slow rotational dynamics conspire to allow harvesting the energy of turbulence.
Both the propulsion velocity Vp and the characteristic time Tθ of rotational diffusion depend on
the relative size of the object with respect to the turbulence forcing scale L f . This size dependence
highlights the role played by the underlying fabric of the wave-driven turbulence in the rectification
phenomenon. The geometry of the floater is also investigated and a shape optimizing its propulsion
is identified. Our results suggest a different mechanism of propulsion at the air-water interface [21]
and reveal a regime of enhanced turbulent transport for anisotropic objects due to the coupling
between propulsion and rotational diffusion.

II. EXPERIMENTAL RESULTS

In these experiments, turbulent flows are produced on a liquid surface perturbed by parametri-
cally excited waves, also known as Faraday waves [22]. This is a convenient experimental system to
produce erratic surface flows that in many respects resemble two-dimensional turbulence [23–28].
The waves are generated in a circular 290-mm-diam container shaken vertically at a frequency
set in the range of fs = 30–120 Hz (see more details in the Supplemental Material [29]). Although
energy is injected into the vertical oscillations of Faraday waves, part of this energy is converted into
chaotic horizontal fluid motion via the generation and interaction of horizontal vortices [27,30,31].
Those vortices have a characteristic size of L f , equal to half the Faraday wavelength λ. An important
feature of wave-driven turbulent flows is that the forcing scale L f = λ/2 is a function of the forcing
frequency fs. In the experiments, L f is tuned within the range 3–9 mm. The wave-driven flows are
random with no mean component. Transport properties of these flows have been extensively studied
[25,28,32–35]. The timescale TL of the wave-driven flows (deduced from the Lagrangian velocity
autocorrelation function) is typically of the order of 0.2 s. The rms velocity U of the turbulent
flow depends on the kinetic energy accumulated over a broad range of scales. This range of wave
numbers is illustrated in the kinetic energy spectrum in Fig. 1(a), where k/k f = 1 corresponds to the
energy injection scale L f . Such spectra are formed in the process referred to as the inverse energy
cascade in two-dimensional (2D) turbulence [23]. They emerge due to a transfer of energy from
the injection wave number k f towards smaller k (larger scales). In Fig. 1(a), this energy transfer
is identified by a spectrum scaling of Ek ∝ k−5/3, which is consistent with Kraichnan’s theory of
2D turbulence [23]. Figure 1(b) illustrates the chaotic motion of tracer particles (50 μm diameter)
at the surface perturbed by Faraday waves. Recent work uncovered that wave-driven turbulence
possesses an underlying fabric which consists of riverlike structures [18]. When observed from the
Lagrangian point of view, these structures are seen as coherent bundles of fluid particle trajectories.
Figure 1(c) shows a coherent bundle measured using a combination of particle tracking velocimetry
and a topological tool based on the braid theory [18,34,36]. The typical width of these riverlike
streaks, or bundles, is comparable to L f .

In this study, we are interested in the behavior of large floating objects placed in such wave-driven
turbulent flows [see Fig. 1(b)]. The floating objects are printed on a high-resolution 3D printer and
are made of a thermoplastic polymer (see more details in the Supplemental Material [29]). The
floaters have various shapes with a “characteristic” radius rs in the range of rs = 2.5–40 mm.
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FIG. 1. Statistics and visualization of wave-driven turbulent flows. (a) Wave number spectrum Ek (k) of
the horizontal kinetic energy of the wave-driven flow. The red arrow indicates the forcing wave number k f at
which energy is injected into the flow. The orange arrow indicates the direction of the energy flux ε towards
small wave numbers (i.e., large scales). The k−5/3 scaling signals the presence of the inverse energy cascade,
a mechanism consistent with the Kraichnan theoretical prediction of 2D turbulence. (b) Fluid particle streaks
around a 40-mm-radius anisotropic object. The dynamics of the floating object is much slower than that of the
flow. Fluid particle streaks are tracked for 1 s. The characteristics of the turbulent flow are U = 3 × 10−2 ms−1,
Lf = 4.4 mm, and TL = 0.15 s. The scale bar is equal to 40 mm. (c) From the Lagrangian viewpoint, wave-
driven turbulence is composed of numerous interacting riverlike structures whose dynamics is studied using
particle tracking. This figure shows such an elongated structure, or a bundle of trajectories, with a characteristic
width determined by the forcing scale Lf . The bundle is tracked for a time interval of 8TL; the blue arrows
indicate the direction of the bundle motion.

A. Passive swimming powered by turbulence

Figures 2(a) and 2(b) show trajectories of floating objects of different shapes in wave-driven
turbulent flows. These objects are larger than the characteristic length scale of the flow L f . The
motion of a floating circular disk is erratic, as can be seen in Fig. 2(a) (see the video in the
Supplemental Material [29]). The main focus of this study is the behavior of noncircular floating
objects, in particular disks with a cut-out 90◦ sector. The motion of such floater in a turbulent flow
is very different from that of a circular disk: It travels along an almost straight trajectory [Fig. 2(b)]
(see video in Supplemental Material [29]). The direction of motion is always oriented along the
bisector of the missing sector. Due to its ability to propel itself on a wavy fluid surface, we call this
object a surfer. We study the behavior of surfers for different scale ratios rs/L f at a fixed kinetic
energy of turbulence U 2.

A typical experimental run produces 1000 independent trajectories for any given value of the ratio
rs/L f . An important statistical characteristic of these trajectories is the mean-square displacement
(MSD) computed as 〈δr2〉 = 〈|−→r (t ) − −→r (0)|2〉, where −→r (t ) is the position of the floating object
in the horizontal plane at time t and 〈 〉 denotes the statistical average. In the case of a floating disk
[Fig. 2(c)], the MSD shows a transition between a ballistic regime at short times (〈δr2〉 ∼ t2 at t �
Tdisc) to a diffusive behavior at longer times (〈δr2〉 = 2Dt at t 	 Tdisc). Here Tdisc is the characteristic
time obtained by integrating the Lagrangian velocity autocorrelation function ρu(�t ) = 〈uo(t0 +
�t )uo(t0)〉/u2

o, where uo is the velocity vector of the floating object and uo is its rms value; ρu(�t )
characterizes the process of memory loss during the object’s motion. In the case of a disk [Fig. 2(d)],
ρu(�t ) is a rapidly decaying function and Tdisc is typically of the order of a second. This behavior
for the MSD and ρu(�t ) is observed independently of the disk radius.

At large values rs/L f > 6, the MSD of a surfer shows only a ballistic behavior, which is statistical
evidence of the strong propulsive effect [see Fig. 2(c)]. The motion of the surfer is not purely
deterministic but presents a certain level of randomness due to fluctuations in both its velocity
magnitude and direction. This is illustrated in Fig. 2(b): The motion of a surfer is strongly biased
towards one direction, but it also shows small erratic agitation under the action of the surrounding
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FIG. 2. Passive swimming powered by turbulence. (a) Trajectory (red line) of a floating disk (with a 90◦

sector in gray) in wave-driven turbulence; the motion of the disk is tracked for 50 s. (b) Trajectory (red line) of
an anisotropic object, a surfer, in a wave-driven flow with the same turbulence intensity as in (a); the motion of
the object is tracked for 25 s. While the motion of a disk is erratic, the motion of the surfer is highly directional
(the direction is indicated by the orange arrow). The scale bars are 40 mm. (c) Mean-square displacement 〈δr2〉
of a disk and of a surfer versus time. The gray dotted lines indicate the scalings expected for the ballistic and
diffusive regimes. (d) Autocorrelation functions ρu(�t ) of the velocity of a disk and that of a surfer. The data
in (c) and (d) are averaged over 1000 independent trajectories of a disk and a surfer which have the same radius
of 20 mm. The parameters of the turbulent flow are U = 2.3 × 10−2 ms−1, Lf = 3 mm, and TL = 0.15 s.

turbulence. This dynamics is clearly reflected in the autocorrelation function ρu(�t ), which shows
two regimes [see Fig. 2(d)]: (i) a fast decrease of ρu(�t ) at short timescales (�t < Tdisc) similar to
the one observed for a disk and linked to the turbulent fluctuations, followed by (ii) a much slower
decrease related to the propulsion phenomenon.

The shape of ρu(�t ) allows us to identify two components in the surfer’s motion: the propulsive
one and the turbulent one. There is in fact a competition between these two components: The
magnitude of one compared to the other can be tuned by varying the ratio rs/L f . This results
in clear changes in the behavior of the surfer [Figs. 3(a) and 3(b)]. Figures 3(c) and 3(d) show
the MSD of a surfer with radius rs = 20 mm for two different values of the flow characteristic
scale L f . It can be seen that the long-time behavior (t > Tdisc) of the MSD can be switched from
a propulsion-dominated regime to a purely diffusive motion by decreasing the size ratio from
rs/L f = 6.6 to rs/L f = 2.5.

B. Orientational dynamics

The propulsion effect is obviously connected to the surfer asymmetry and therefore to its
orientation. To understand the origin of the slow dynamics detected in the velocity autocorrelation
function [Fig. 2(d)], we now investigate the rotational dynamics of the surfers.

The surfer’s orientation is characterized by the angle θs and the associated vector ns as shown
in Fig. 4(a). We then measure the surfer’s angular velocity ω(t ) = ∂θs/∂t and compute the
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FIG. 3. (a) and (b) Trajectories (red lines) of the same surfer (radius rs = 20 mm) in two different turbulent
flows having identical kinetic energy but different forcing scales Lf . In (a) the ratio rs/Lf = 6.6, while in (b)
rs/Lf = 2.5; the surfer motion is tracked for 25 s. (c) and (d) Mean-square displacement of the surfer versus
time for the two different size ratios shown in (a) and (b). The data are averaged over 1000 independent
trajectories of the surfer and gray dotted lines are fits based on Eq. (1) of Sec. II D. The turbulent flow
parameters are U = 2.3 × 10−2 ms−1 and (a) Lf = 3 mm and (b) Lf = 7.7 mm.
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FIG. 4. Orientational dynamics of the surfer. (a) Angular coordinate system (θs, θv ) of a surfer; θs charac-
terizes the surfer’s orientation and θv characterizes the direction of the surfer’s velocity. The unit orientation
vector ns (associated with the angle θs) is also defined. (b) Mean-square angular displacement (MSAD) 〈δθ2〉(t )
for the value of the ratio rs/Lf = 3.3. The top left inset shows the derivative of the MSAD with respect to time.
The bottom right inset shows the autocorrelation function of the orientation vector ns of surfers for the same
value rs/Lf . The gray lines indicate an exponential fitting function e−�t/Tθ . (c) Characteristic time Tθ of the
rotational diffusion versus the ratio rs/Lf . Here Tθ characterizes the randomization of the surfer’s orientation.
Experimental data can be fitted by Tθ (rs/Lf ) ∼ (e0.5rs/L f ). The experimental parameters are rs = 20, 30, and
40 mm, U = 2.3 × 10−2 ms−1, and TL ≈ 0.2 s.
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mean-squared angular displacement 〈δθ2〉 = 〈[∑ω(t )δt]2〉. The latter presents a gradual transition
from a ballistic (〈δθ2〉 ∝ t2) to a diffusive regime (〈δθ2〉 ∝ t), which is identified in Fig. 4(b)
(main panel and top inset). The diffusive rotation is characterized by a coefficient Dθ such that
〈δθ2〉 = 2Dθ t .

Under the action of turbulence, the surfer undergoes rotational diffusion with a characteristic
timescale Tθ = 1/Dθ . Here Tθ characterizes the randomization of the surfer’s orientation, i.e., the
statistically averaged time it takes for the initial orientation θs(t0) to be randomized; Tθ can also be
directly estimated from the autocorrelation function of the orientation vector ns [see bottom right
inset of Fig. 4(b)]. The timescale Tθ is strongly dependent on the ratio rs/L f . Figure 4(c) shows
that Tθ increases exponentially with the increase in the ratio rs/L f such that Tθ ≈ eγ rs/L f . In these
experiments, Tθ can be varied over almost two orders of magnitude. The exponential rate of growth
γ is of order unity and points to L f as the characteristic length scale that governs the rotational
dynamics.

C. Translation-rotation coupling

In this section, we investigate the characteristics of the coupling between the rotation and
translation of a surfer. First we study the correlations between the surfer’s orientation θs and the
direction of its velocity vector defined by the angle θv [see Fig. 4(a)]. Along a surfer’s trajectory, the
angle difference δθsv = θs − θv is a random variable with a clear bias due to the surfer asymmetric
shape. This statistical bias is clearly seen in the probability density function (PDF) of the angle
difference δθsv , as shown in Fig. 5(a). In the case of a disk this PDF is flat, illustrating the absence
of correlations between the velocity vector direction and an arbitrary direction marked on the disk.
In contrast, the PDF becomes peaked around δθsv = 0◦ for a surfer and the effect is stronger as the
ratio rs/L f becomes larger. Given the shape of the PDF, we define three orientation domains colored
in red, green, and blue, respectively, and labeled as domains �1, �2, and �3 in Fig. 5(b). The domain
�1 corresponds to the propulsive events for which ‖δθsv‖ ∈ [0,+45◦], �2 is the turbulent region for
which ‖δθsv‖ ∈ [45◦, 135◦], and �3 is the anticorrelated domain for which ‖δθsv‖ ∈ [135◦, 180◦].

The magnitude of the surfer velocity modulus |Vs| depends on the angle difference ‖δθsv‖. This
effect is studied by computing the average Vsi of the speed |Vs|(δθsv ) over each orientational domain
�i, i.e., Vsi = 〈|Vs|〉�i . Figure 5(c) shows the average value 〈|Vs|〉�i normalized by the average speed
of a disk as a function of the domain �i. The speed of a surfer becomes a function of its orientation
for values of rs/L f > 3 (while the conditional averaging of the disk speed shows no dependence
on its orientation). As the ratio rs/L f increases, the speed 〈|Vs|〉�1 becomes larger than the speed
measured for a disk of the same size as the surfer. Moreover, the speed component 〈|Vs|〉�1 is larger
than 〈|Vs|〉�2 and 〈|Vs|〉�3 . We also note the nonmonotonic behavior of the ratio 〈|Vs|〉�3/〈|Vdisc|〉
with respect to rs/L f . The previous results confirm that rs/L f is a key parameter for the emergence
of the directional motion.

The mean-square velocity 〈V 2
s 〉 of a surfer is a decreasing function of the ratio rs/L f . This is

observed in the whole range of size ratio rs/L f studied, as shown in Fig. 5(d). The mean-square
velocity of the larger surfer (rs/L f = 10) is almost two orders of magnitude smaller than that of
a small surfer (rs/L f < 1). The kinetic energy of the surfer is directly measured as Es = Ms〈V 2

s 〉,
where Ms is the mass of the surfer. Figure 5(e) reveals that the energy Es does not depend on the
parameter rs/L f when rs/L f > 1. It turns out that large surfers, i.e., rs/L f > 1, extract the same
amount of energy from the turbulent flow. When compared with the data shown in Figs. 5(a)–5(c),
these results reveal that the main ingredient for strong propulsion is the partition of the surfer’s
kinetic energy Es between the different components Vsi of its velocity.

To gain further insights into this phenomenon, we define the speed Vp = p1Vs1 − p3Vs3, where
pi is the probability of ‖δθsv‖ ∈ �i. In the following, we will refer to Vp as the propulsion speed.
This allows us to compute a propulsion parameter β defined as β = Vp/p2Vs2 which characterizes
the partition of energy between the propulsive and turbulent components of the surfer’s velocity. By
construction, β = 0 for a disk. The dependence of β on the parameter rs/L f is shown in Fig. 5(f).
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FIG. 5. (a) Probability density function of the angle difference δθsv = θs − θv for a disk and surfers with
various values of the ratio rs/Lf . (b) Schematics illustrating the definition of the three angular domains �i.
The propulsive domain is �1, for which ‖δθsv‖ ∈ [0, +45◦]; the turbulent domain is �2, for which ‖δθsv‖ ∈
[45◦, 135◦]; and the anticorrelated domain is �3, for which ‖δθsv‖ ∈ [135◦, 180◦]. (c) Ratio 〈|Vs|〉�i /〈|Vdisc|〉
as a function of the domain �i, where 〈|Vs|〉�i is the surfer velocity modulus conditionally averaged over an
angular domain �i and 〈|Vdisc|〉 is the averaged velocity modulus of a disk of the same size as the surfer.
(d) Mean-square velocity 〈V 2

s 〉 of a surfer as a function of the size parameter rs/Lf . (e) Kinetic energy Es =
Ms〈V 2

s 〉 versus the parameter rs/Lf for a fixed turbulent flow energy U 2. (f) Propulsion parameter β versus
the scale ratio rs/Lf . The parameter is defined as β = (p1Vs1 − p3Vs3)/p2Vs2, where pi is the probability of
‖δθsv‖ ∈ �i and Vsi = 〈|Vs|〉�i . The values of β measured for disks, which theoretically should be zero, are
also shown and used to indicate the noise level (gray area). The experimental parameters are rs = 2.5–40 mm,
U = 2.3 × 10−2 ms−1, and Lf = 3–9 mm.

Surfers with size ratio rs/L f < 1 do not show any sign of propulsion and β ≈ 0. The parameter β

increases over the range 1 < rs/L f < 6. Above rs/L f ≈ 6, β saturates at the level of about 1.5; in
that regime the propulsion speed is 1.5 higher than the typical velocity component associated with
the turbulent agitations.

As described in Ref. [18], the propulsion mechanism is related to the coupling of the riverlike
structure of wave-driven turbulence with the surfer’s boundary. In the vicinity of the surfer’s corner,
there is a fluid domain where these rivers are both protected from the external turbulent fluctuations
and guided by the wall (see the schematics in Sec. 2 of Supplemental Material [29]). This guiding
effect produces a reaction force that generates propulsion. The plateau in β suggests that the size
of this protected fluid domain producing the thrust cannot exceed 6L f . This upper bound might be
related to an important feature of laboratory 2D turbulence. In our experiments, the inverse cascade
spreads energy up to scales close to 10L f . This upper bound is readily observed since it determines
the size of the largest domain in which spectral condensation, or the self-organization of 2D
turbulence into large coherent structure, is observed experimentally [24,37]. The main ingredient for
both spectral condensation and turbulence-driven propulsion is the confinement (global or partial)
of 2D turbulence.
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FIG. 6. Influence of the surfer’s geometry on the propulsion. (a) Kinetic energy Es = Ms〈V 2
s 〉 as a function

of the angle α for a fixed turbulent flow energy U 2. (b) Propulsion parameter β versus the angle α. The
experimental parameters are rs = 40 mm, U = 2.3 × 10−2 ms−1, and Lf = 4.4 mm.

The previous results concern the propulsion of a surfer with a fixed geometry. It is interesting
to ask whether an optimal shape for the surfer exists for which both the extracted energy Es

and the propulsion parameter β will be maximum. To address this question, experiments were
performed using surfers with different geometries. Given the complexity of the question, we
restricted ourselves to the case of surfers with different angle α for the cut-out sector. In these
experiments, the turbulent flow energy and forcing scale are fixed and we focus on the behavior
of large surfers rs/L f ≈ 9. Figure 6(a) shows the evolution of the surfer’s kinetic energy Es over a
broad range of angle α. It reveals the existence of a maximum for α = 90◦. The energy extracted
from turbulence by a surfer with a 90◦ cut-out sector is two times larger than that of a disk or a
wedge (α = 270◦) with similar radius. Figure 6(b) shows how the parameter β is impacted by the
shape of the surfer. The propulsion parameter is a nonmonotonic function of α and it reaches a
maximum value of β ≈ 1.5 at α = 90◦. The results demonstrate that the geometry of the surfer
is a key parameter to enhance the propulsive force. This effect is discussed further in Sec. III. To
conclude this section, we emphasize that β encapsulates two features of the surfer’s motion: the
enhanced angular alignment between the surfer’s velocity and its orientation θs [Fig. 5(a)] and its
ability to tap efficiently the turbulent flow energy [Fig. 5(c)].

D. Propulsive and diffusive length scales

A surfer propels itself with a speed Vp along a direction prescribed by its geometry. It has been
shown in Sec. II B that this direction of motion is subject to turbulent rotational diffusion, which
leads to a coupling between translation and rotation. In this section, we use a simple minimal model
to describe the influence of this coupling on the MSD of a surfer with a cut-out 90◦ sector.

A key parameter to model the behavior of the surfer is the propulsion length scale Lβ = VpTθ ,
where Vp is the propulsion speed and Tθ is the characteristic timescale of turbulent rotational
diffusion. It represents the average distance traveled by a surfer before its direction is randomly
changed. This length scale characterizes the coupling between propulsion and rotation. Based on
this observation, we propose to model the MSD 〈δr(t )2〉 of a surfer as

〈δr2(�t )〉 = 2Dt�t + V 2
p T 2

θ

2

[
2�t

Tθ

+ e−2�t/Tθ − 1

]
, (1)

where Dt is the translational diffusion coefficient, i.e., Dt characterizes the turbulent transport, and
〈 〉 again denotes statistical averaging. We note that equations of the form of Eq. (1) are generally
found in the modeling of an object endowed with a directed propulsive mechanism and subject
to a process that randomizes the direction of its motion (turbulence in our case). For instance, a
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90o

FIG. 7. Length scales Lβ and Lt versus the scale ratio rs/Lf for a surfer with cut-out 90◦ sectors. Here
Lβ = VpTθ is the propulsion length scale traveled by a surfer before its direction is randomized by the
turbulence, while Lt is the characteristic step size of the turbulent diffusive motion measured for a disk. The
light gray dashed line indicates the exponential growth of Lβ versus rs/Lf . The horizontal dashed line indicates
the container radius Rc. The experimental parameters are rs = 20–40 mm, U = 2.3 × 10−2 ms−1, and Lf =
3–9 mm.

similar model has been used to characterize the behavior of self-propelled colloidal particles whose
propulsion mechanism relies on asymmetric chemical properties [38]. As shown in Figs. 3(c) and
3(d), Eq. (1) allows us to fit quite accurately our experimental measurements of 〈δr2(�t )〉.

An interesting aspect of the right-hand side of the equation is that it predicts a transition in
the dynamics related to the characteristic timescale Tθ . More precisely (if we neglect the diffusion
coefficient Dt for simplicity), two regimes can be described. (i) When �t < Tθ , the dynamics
is dominated by 〈δr2(�t )〉 ≈ L2

β�t2/T 2
θ ≈ V 2

p �t2, which corresponds to the ballistic propulsive
regime. (ii) In the opposite limit, when �t > Tθ , we have 〈δr2(�t )〉 ≈ L2

β�t/Tθ ≈ V 2
p Tθ�t , which

corresponds to the enhanced diffusion regime due to the coupling of rotational diffusion and
propulsion.

In our experiments, Eq. (1) offers a basis for studying the interplay between three mechanisms:
turbulent transport, propulsion, and rotational diffusion. The competition between these effects can
be studied by comparing two characteristic length scales, namely, Lβ and a length scale associated
with the turbulent transport. The latter can be defined as Lt = 2Dt/uo, where uo is the rms velocity
of a nonpropelling object, i.e., an object for which Vp = 0. In our experiments, Lt can be directly
determined from the behavior of the floating disk, and we use Lt = Ldisc = 2Ddisc/udisc, where
udisc is the rms velocity of the disk. The propulsion length scale Lβ can be estimated by using the
measurements of Tθ (Sec. II B) and of the propulsion speed Vp (Sec. II C). The length scale Lβ marks
the transition from the propulsion-dominated regime to the enhanced diffusion regime; indeed, for
�t = Tθ the MSD is equal to 〈δr2(Tθ )〉 = L2

β . With this in mind, the comparison between Lt and
Lβ allows us to describe most of our previous observations. In particular, we can now quantitatively
discuss the influence of the finite container size on our results.

Figure 7 shows the evolution of the characteristic length scales Lβ and Lt versus the normalized
size rs/L f . For the surfer, Lβ strongly increases with the increase in rs/L f while for the disk Lt

decreases; Lβ shows an exponential dependence on rs/L f which is inherited from the behavior of
Tθ [Fig. 4(c)]. We note that Lt , the distance traveled by a disk before its motion becomes diffusive,
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is always much smaller than the container radius Rc. Therefore, for times long enough [�t > Tdisc;
see Fig. 2(d)], it is possible to observe the transition to the turbulent diffusion regime 〈δr2(�t )〉 ≈
2Dt�t irrespectively of the disk size.

For low values of the relative size rs/L f < 4, a similar conclusion holds for a surfer: The long-
time dynamics is diffusive because Lβ and Lt have comparable magnitude and both are much smaller
than the radius of the container Rc. In that regime, the effective diffusion coefficient of the surfer is
actually composed of two terms D = Dt + V 2

p Tθ .
However, when the size parameter is large rs/L f > 6, Lβ becomes comparable to or larger than

Rc and much larger than Lt . For instance, Lβ is 100 times larger than Lt and two times larger than Rc

for rs/L f = 9.1. It implies that propulsion effects become dominant over the turbulent transport and
that only the propulsive ballistic regime 〈δr2(�t )〉 ≈ L2

β�t2/T 2
θ can be observed due to the finite

size of the container.
An important insight given by this model is that, even for the largest surfers (rs/L f > 6), the

propulsion mechanism described here actually will revert to a random walk for times longer than Tθ

in an unbounded environment. In this ultimate regime, we note that the effective diffusion coefficient
Dp = V 2

p Tθ is a strong function of the size parameter rs/L f and it can be much higher than the
turbulent diffusion coefficient Dt . For example, we find V 2

p Tθ ≈ 500Dt at rs/L f = 9.1.

III. DISCUSSION

Recently, a physical mechanism which allows one to tap the kinetic energy accumulated in the
inertial range of 2D turbulent flows was reported and the case of a turbulence-driven chiral rotor
was studied in detail [18]. The Lagrangian nature of this mechanism of energy conversion raised
the prospect to fuel not only rotation but also locomotion at a fluid surface. Here we have studied
different aspects of such locomotion which is related to the broader topic of thrust generation in
a flow. We demonstrate that asymmetric objects, referred to as surfers, can efficiently extract the
energy of chaotic flows to fuel directed locomotion. The results show that the relative size of the
object normalized by the flow forcing scale rs/L f is a key parameter which controls the existence
of this type of locomotion. The role played by the forcing scale L f in the propulsion mechanism is
related to the coupling of the anisotropic object to the underlying riverlike structure of the turbulent
flow. This coupling has been described in detail in [18] and it is the fuel of the propulsion force Fp

acting on the surfer (measurements of the force Fp using an optical fiber cantilever [39–41] can be
found in the Supplemental Material [29]). The mechanism relies on bundles of fluid trajectories
of characteristic width L f that transfer their momentum to the surfer. The importance of this
Lagrangian flow structure is reflected in the dependence of Vp and Tθ on the scale ratio rs/L f ;
most importantly, passive propulsion is only observed when rs/L f > 1.

This study reveal two key features of passive propulsion in wave-driven turbulence.
(i) The coupling of the translation and rotation of the surfer is a natural consequence of a

directional propulsion mechanism related to the surfer’s asymmetry. It implies that the characteristic
timescale of the propulsion is the timescale Tθ associated with the rotational diffusion. It also implies
that the motion of a surfer would ultimately revert to a random walk under the action of the turbulent
rotational diffusion in an unbounded fluid domain. In our experiments, Tθ is an exponential function
of the size parameter rs/L f . This feature gives us the ability to tune the magnitude of the effective
diffusion coefficient Dp = V 2

p Tθ in a broad range with respect to the turbulent diffusion coefficient
Dt .

(ii) The geometry of the surfer strongly impacts its locomotion. In these experiments, surfers
are circular sectors and two geometric parameters were varied: the radius rs and the angle α of the
cut-out sector. When the radius is varied and α is equal to 90◦, it turns out that surfers extract the
same amount of energy Es from the turbulent flow and the propulsion relies on the fraction of this
energy that fuels the propulsion speed Vp. The larger the surfer, the better the conversion of the
energy Es into directed motion. When the surfer is large (rs/L f > 1) and α is varied, an optimum
shape for the passive locomotion has been identified; when α is equal to 90◦, it maximizes both
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the kinetic energy Es harvested from the turbulent flow and the part of this energy that fuels the
propulsion speed Vp.

The latter point suggests that efficient passive locomotion relies on a trade-off: On one hand,
the angle α has to be large enough so that the surfer can interact with the turbulent eddies; on the
other hand, a large α substantially lowers the moment of inertia and therefore will lead to increased
angular fluctuations and less efficient propulsion. This trade-off is clearly captured by the behavior
of β versus α shown in Fig. 6(b).

In the context of exploiting the energy of turbulent flows, an interesting question concerns the
estimate of the range of eddies that can efficiently fuel a propulsion mechanism. The question is
of interest for both engineering applications (thrust generation by flow-structure coupling) and in
biology (passive swimming) [2–4,13,14]. In these two domains, modeling approaches often describe
the interaction of an object or a fish with eddies of comparable size among the hierarchy of turbulent
eddies. These models assume some kind of localness of the transfer of energy (here local means that
interactions mostly occur between the object and eddies of comparable size). Such a model would
predict that larger surfers interact with large energy-containing eddies and can therefore harvest
more energy from the flow. However, our results of Fig. 5(e) show that the extracted energy Es is
constant over a broad range of surfer size.

Our understanding of the flow-surfer coupling is based on the characterization of the fine
Lagrangian structure of 2D turbulence. More precisely, it was shown that a Kraichnan scaling k−5/3

measured in the Eulerian frame can correspond to interacting riverlike structures in the Lagrangian
frame. These rivers are elongated structures whose statistical length is much longer than their
characteristic width L f . This observation has consequences on the localness of the transfer of energy
in wave-driven turbulence. Indeed, the forcing scale L f interacts with larger scales to give birth to
the riverlike structures [18]. This shows that a level of nonlocality might exist in the transfer of
energy. This also suggests that the coupling of the surfer to the flow fabric is also nonlocal and that
in fact the surfers tap energy of the entire inertial interval in our experiments.

An interesting question concerns the extension of our results to 3D chaotic flows. The results
presented in [18] show that passive propulsion is intrinsically connected to the Lagrangian structure
of the flow (here bundles of fluid trajectories). It is possible that similar Lagrangian flow structures
could exist in 3D disordered flows if there is a degree of anisotropy of the flow at small scales. If this
is the case, then a mechanism of passive propulsion similar to that reported here should in principle
be possible. Recent developments in the analysis of coherent structures in turbulent flows should
allow one to detect the presence of similar Lagrangian features in 3D flows.

The presented experiments reveal that passive propulsion is possible in strongly turbulent flows.
More studies are needed to explore the different aspects of turbulence-driven locomotion. One of
these aspects is the enhanced turbulent transport of anisotropic object via the coupling of the object’s
geometric shape with the Lagrangian fabric of turbulent flows.
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