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ABSTRACT
Experimental investigation of particle pair separation is conducted in two types of laboratory two-dimensional turbulence under
a broad range of experimental conditions. In the range of scales corresponding to the inverse energy cascade inertial interval,
the particle pair separation exhibits diffusive behaviour. The analysis of the pair velocity correlations suggests the existence
of coherent bundles or clusters of non-diverging fluid particles. Such bundles are also detected using a recently developed
topological tool based on the concept of braids. The bundles are observed as meandering streams whose width is determined by
the turbulence forcing scale. In such locally anisotropic turbulence, the particle pair dispersion depends on the initial particle
separation and on the width of the bundles.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5082851

I. INTRODUCTION

Theoretical prediction of the inverse energy cascade
by Kraichnan in 19671 opened the field of two-dimensional
(2D) turbulence with applications ranging from atmospheric
physics2,3 to laboratory and industrial flows. While initially
two-dimensional turbulence was thought as a mathematical
abstraction, it turned out to be a robust physical mecha-
nism observed in flows which are not intuitively perceived
as 2D.4,5 Laboratory experiments6–10 and numerical simula-
tions (e.g., Refs. 11 and 12) have confirmed Kraichnan’s predic-
tions of the two inertial ranges, below and above the forcing
wave numbers: the inverse energy cascade range, Ek ∝ k−5/3

at wave numbers smaller than the forcing kf , and the direct
entropy cascade, Ek ∝ k−3 at k > kf . Later, a 2D version of
the Kolmogorov 4/5 law which relates the third-order struc-
ture functions for the velocity fluctuations to the separation
distance in 2D turbulence has also been confirmed in labora-
tory experiments.9,10 Overall, there is an agreement between
theory, numerical simulations, and laboratory experiments on
the main Eulerian statistics of 2D turbulence such as energy
distribution between the scales.13,14

For problems related to the particle dispersion, such as
mass transport, one needs to adopt a Lagrangian perspective
and consider the fluid motion in the frame of moving fluid
particles. The classical prediction by Richardson,15 who con-
sidered a problem of a mean squared separation of initially
close particles in a dispersing cloud, is that the diffusion coef-
ficient should scale as K = CRR4/3, where CR is a constant and R
is the distance between two particles. Later, Obukhov16 con-
nected this result with Kolmogorov’s distribution of energy in
the turbulence spectrum and obtained a similar relation from
dimensional reasoning. A Richardson-Obukhov law that fol-
lows from this reads 〈R2(t)〉 = CRε t3, where CR is the Richardson
constant and ε is the energy dissipation rate. The Richardson-
Obukhov phenomenology describes the pair dispersion as a
process in which initially close particles separate self-similarly
and continuously for a long time, i.e., a process governed by a
multi-scale dynamics in a homogeneous isotropic flow.

2D turbulence in laboratory is generated electromagneti-
cally in layers of electrolytes,6,7 in soap films,17–19 and more
recently, on the surface of a liquid perturbed by Faraday
waves.20,21 All these types of turbulence support the inverse
energy cascade. It has recently been shown that in the case of
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the wave-driven turbulence, the underlying Lagrangian struc-
ture of the flow is dominated by locally anisotropic bundles
of fluid trajectories.22 Such anisotropic bundles should be
responsible for modifications to the self-similar dispersion
expected in isotropic turbulence and may bring important
deviations from the classical Richardson-Obukhov law.

Here we study experimentally the pair dispersion statis-
tics in both electromagnetically driven and in Faraday-wave
driven turbulence at Reynolds numbers typical for quasi-2D
laboratory turbulence, Re ≤ 200. We show that the presence
of locally anisotropic bundles substantially modifies the pair
dispersion at modest Reynolds numbers.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS
In the reported experiments, turbulence is produced

using two different methods described in Refs. 23 and 24. In
the first method, turbulence is generated electromagnetically
in layers of electrolytes.7 In the second method, it is driven by
parametrically excited surface waves or Faraday waves.21,25

Electromagnetically driven turbulence (EMT) is produced
in layers of electrolytes by generating an electric current
across the fluid cell (square container 30 × 30 cm) placed
above an array of permanent magnets.9,10,24,26 A double layer
configuration is used to reduce the bottom dissipation and 3D
effects.27 In this case, a 4 mm thick layer of Na2SO4 water
solution is placed on top of a 4 mm layer of a heavier, non-
conducting, low-viscosity fluid (FC-3283). The Lorenz J × B
force produces horizontal vortices which interact with each
other, generating complex 2D flows. By changing the current
density J, one can control the degree of turbulence develop-
ment and the energy injected into the flow at the scale which
is approximately equal to the distance between the magnets
(9 mm in this experiment), the forcing scale Lf .

The second method of turbulence generation, the Faraday
wave turbulence (FWT), was recently discovered on the sur-
face of vertically vibrated liquids.20,21 The motion of particles
on the surface perturbed by parametrically excited Faraday
waves reproduces remarkably well the fluid motion in 2D tur-
bulence. This method relies on the ability of waves to gener-
ate vorticity at the fluid surface.25,28,29 In these experiments,
Faraday waves are generated in a 180 mm diameter circular
container filled with water. The container is shaken verti-
cally at the frequency of 60 Hz at the peak-to-peak acceler-
ation in the range of a = (1–2)g, where g is the gravitational
acceleration.

The experimental parameters for different experiments
analyzed in this paper are shown in Table I, where U2 is the
kinetic energy of the flow (U is the rms of the horizontal
velocity fluctuations) and TL is the Lagrangian autocorrela-
tion time, which will be discussed later. All flows, listed in
Table I, are turbulent. The Reynolds number, Re = ULf/ν (Lf
is the forcing scale, and ν is the kinematic viscosity), is in
the range of 25–200. Results on the single particle dispersion
in the same experiments24 suggest that the finite boundary
size effects are negligible. The single particle dispersion Dexp,
the kinetic energy of the flow U2 and the Lagrangian time
TL were measured independently. The measured dispersion

TABLE I. Experimental parameters for different experiments analyzed. The forcing in
the EMT experiments is controlled by the current, while in the FWT experiments, it is
controlled by the vertical acceleration.

Label Forcing U2 (m2/s2) Lf (mm) TL (s)

EMT1 0.4 × 103 A/m2 7.6× 10−6 9 1.9
EMT2 0.6 × 103 A/m2 2× 10−5 9 1.6
EMT3 0.8 × 103 A/m2 3.1× 10−5 9 1.2
EMT4 1.2 × 103 A/m2 5.1× 10−5 9 1
FWT1 60 Hz, 1.0g 1.6× 10−4 4.4 0.27
FWT2 60 Hz, 1.2g 3.2× 10−4 4.4 0.17
FWT3 60 Hz, 1.6g 1.02× 10−3 4.4 0.1
FWT4 60 Hz, 2.0g 1.83× 10−3 4.4 0.08

confirms Taylor’s particle dispersion law for unbounded
system: D = U2TL.

The kinetic energy spectra of these flows show a 2D
inverse energy cascade range scaling of Ek ∼ k−5/3.10,21,23,24
Examples of the spectra are shown in Fig. 1. The energy
injected into the system at kf = 2π/Lf is transferred to larger
scales forming k−5/3 spectra. The increase in forcing (injected
energy) leads to the increase in total horizontal kinetic energy
of the flow, but the shapes of spectra remain unchanged
(Fig. 1). All flows considered in this paper are in the steady
state; the spectra do not change over time.

Although both flows show the Kolmogorov-Kraichnan
spectra, the nature of the forcing is different in these two
experimental setups. For the EMT experiments, the forcing
vortices are initially generated at fixed positions determined
by the array of permanent magnets. These vortices are then
pushed around and randomised by shearing and sweeping
effects.30 In the FWT experiments, Faraday waves have been
shown to act as quasi-particles, or oscillating solitons.31–33

FIG. 1. Kinetic energy spectra of turbulence at two different forcing levels in
Faraday wave turbulence. Vertical accelerations are a = 1g (blue circles) and
a = 1.6g (green triangles).
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Vorticity is injected into the flow at the oscillon scale25 and
randomized by the turbulent flow. The motion of oscillons is
related to that of the tracer particles on the surface as recently
reported.33

In both experiments, the motion on the fluid surface is
visualized by placing 50 µm polyamid particles (specific grav-
ity SG = 1.03) on the water surface. The use of surfactant and
plasma treatment of the particles ensures homogeneous dis-
tribution of the tracer particles. The particle motion is cap-
tured using a high-resolution fast camera (Andor Neo sCMOS)
as described in Refs. 21 and 24. In the EMT experiments, an
area of 10 × 10 cm2 was recorded at 30 fps, while in the FWT
experiments, an area of 8 × 8 cm2 was recorded at the speed
of up to 120 fps. The velocity fields are obtained using particle
image velocimetry (PIV).10 To investigate the pair dispersion,
particle trajectories are generated by numerical integration of
the Lagrangian equation of motion, dx(t)/dt = u(x, t). Here x(t)
is a particle 2D coordinate, and u(x, t) is the measured veloc-
ity field. Typically 4 × 105 particles advected by the flow are
tracked using the fourth order Runge-Kutta method. Direct
tracking of particles using particle tracking velocimetry (PTV)
has also been employed.24 In this case, the seeding density of
the imaging particles is lower than in the PIV experiments, to
improve the accuracy of the particle tracking. The domain of

the measurement and the observation time of the experiments
are carefully chosen to avoid any boundary effects on the
velocity measurements. In all these experiments, no spectral
condensation is observed.10,21

The two-dimensionality of the EMT flows has been inves-
tigated both numerically34 and experimentally.27 It has been
shown that in the double-layer configuration, the flow is two
dimensional. In the FWT experiments, the particle motion on
the surface is three dimensional. However, as has been shown
before, the statistics of the horizontal motion exhibit prop-
erties of two-dimensional turbulence. Here we characterize
the dimensionality of the surface flow using the divergence
of the horizontal velocity field defining the 2D compressibility
parameter as35

C =
〈(∂xvx + ∂yvy)2〉

〈(∂xvx)2〉 + 〈(∂xvy)2〉 + 〈(∂yvx)2〉 + 〈(∂yvy)2〉
, (1)

where vx, vy are the two-dimensional velocity components at
the surface. C ≥ 0.5 is indicative of a compressible 2D flow.
For the FWT experiments presented in this paper, the com-
pressibility parameter averaged over 1 Faraday wave period is
small (∼0.1–0.2), close to the value obtained in the quasi-2D
EMT experiments. With an increase in the averaging time the

FIG. 2. Mean squared separation of the
tracer particles in pairs as a function of
time for three initial separations mea-
sured in (a) FWT, and (c) EMT. The dot-
ted lines represent power laws of (a) t2.1

and t3, and (c) t2.4, t3, and t3.4. Mean
squared separation of the tracer parti-
cles in pairs for the initial separation of
R0 ' Lf in (b) FWT and (d) EMT.
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compressibility parameter converges to an even lower value of
C ≈ 0.05. Thus, both the EMT and FWT flows can be considered
as good laboratory models of 2D turbulence.

III. PAIR SEPARATION AND THE EXIT-TIME STATISTICS
The mean squared distance (MSD) between particles in a

pair at time t, 〈R2(t)〉, is the statistical average of the squared
distances R2 between two particles which are initially (at
t = t0) separated by a distance R0.

We compute the MSD of pairs for different initial separa-
tions using trajectories reconstructed from the PIV data. Sim-
ilarly to previously published results,36 the MSD of the pairs is
strongly dependent on the initial separation. When R0 is small
compared with the forcing scale, R0 < Lf , the MSD exhibits a
power law 〈R2〉 ∝ tb, as shown in Figs. 2(a) and 2(c). Such scal-
ing laws are observed in all the experiments, both in the EMT
and in the FWT. At larger separations, R0 ≥ Lf , the MSD behav-
ior changes to 〈R2〉 ∼ t, Figs. 2(b) and 2(d), showing a diffusive
dispersion law.

This diffusive separation is also observed in the analysis of
the particle trajectories obtained using the direct PTV method.
In Fig. 3, the MSD in experiment FWT2 is shown for an initial
separation of R0 ∼ Lf . The number of pairs used in this analysis
is 2000. The scaling at long time is close to 〈R2〉 ∝ t, the same
as the one shown in Figs. 2(b) and 2(d).

The results of Figs. 2(b), 2(d), and 3 do not show the
Richardson-Obukhov law for the pair separation. In the
inverse energy cascade range r > Lf , the Richardson-Obukhov
law predicts that the pair separation should scale with t as
〈R〉2 ∼ t3. However, our experimental results show a diffu-
sive behaviour 〈R〉2 ∼ t for both the trajectories obtained
using the direct PTV technique and the numerically integrated
trajectories using the PIV data.

FIG. 3. Mean squared separation of the tracer particles in pairs as a function
of time for the direct PTV data. The measurements are performed in the FWT
(f 0 = 60 Hz, vertical acceleration a = 1.2g). The MSD obtained from PIV data
shown in Fig. 2(b) is reproduced here as a dashed line.

The exit time statistical analysis was proposed in Refs. 36
and 37 as an alternative analysis tool to evaluate the pair dis-
persion in turbulence. It relies on the statistically averaged
time tex it takes for particles within the pairs to separate from
R0 to βR0. β = 1.2 is usually chosen for most of the analyses
performed in the literature.38 For a Richardson scaling of t3,
the exit time should scale as tex ∝ Rγ0 with γ = 2/3 for scales
larger than Lf . γ = 0.83 was previously reported from labo-
ratory experiments of 2D turbulence.38 Here we perform the
exit time statistical analysis using several values of β.

Figure 4 shows the results using β = 1.2, 1.5, and 2, respec-
tively. In Fig. 4(a), the normalized exit time tex/(R0/Lf )2/3 is
shown as a function of the initial separation (the initial sepa-
ration R0 is normalized by Lf ). The β = 1.5 case shows a reason-
able plateau consistent with a Richardson law for scales R0/Lf
between 2 and 8. No plateau is observed for the other cases
despite a weak variation in β. For all the experiments shown in
Table I, with β = (1.2–2), we find the exit time scales as tex ∝ Rγ0 ,
with γ = (0.4–0.7). These values of γ correspond to b = (2.8–5),
where b is the scaling parameter in

〈
R2(t)

〉
∼ tb.

FIG. 4. (a) The normalised exit time tex/(R0/lf )2/3 and (b) the number of tra-
jectories in the exit time analysis, for three different β. The measurements are
performed in the FWT2.
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In Fig. 4(b), we show the ratio N/Ntotal, where N is the
number of pairs of trajectories separated by more than β times
the initial separation, and Ntotal is the total number of tra-
jectories with the same initial separation. Note that in all the
experiments, Ntotal is more than 104. The particles are tracked
for a long time: more than 40 times the Lagrangian velocity
autocorrelation time for the FWT experiments and 15 times
for the EMT experiments. It can be seen in Fig. 4(b) that for
the range where the Richardson scaling is observed (2 . R0/Lf
. 8) for the β = 1.5 case, the number of trajectories pairs drops
from 80% to 20%.

The result in Fig. 4 shows a distinct difference between
the exit time analysis and the MSD analysis. In the exit time
analysis, many particle pairs, initially separated by R0, do not
play a significant role. Indeed, only the particle pairs separated
by more than βR0 really contribute to the statistically averaged
exit time tex.

Here the analysis of the number of trajectories consid-
ered in the exit time statistics reveals the statistics is biased

FIG. 5. Autocorrelation (ρ11) and cross correlation functions (ρ12) measured in (a)
FWT3 and (b) EMT4 experiments.

towards strongly diverging pairs and all the non-diverging
particles pairs play no role. We will show in Sec. IV that
accounting for the non-diverging particle pairs is essential
to reveal physical mechanisms of the pair separation in 2D
laboratory turbulence.

IV. DIRECTIONAL CROSS CORRELATION FUNCTIONS
To evaluate the importance of non-diverging particle

pairs in the flows, it is instructive to ask the following ques-
tion: how different are the Lagrangian velocity correlation
functions along the trajectories for (i) a single particle and
(ii) two particles in a pair in 2D turbulence? The single par-
ticle velocity autocorrelation function is computed as ρ11(τ)
= 〈~u(t0 + τ) · ~u(t0)〉/σ2, where σ2 is the velocity variance. The
Lagrangian velocity integral time is given by the integral of
the function TL = ∫

∞
0 ρ11(τ)dτ. The directional velocity cross

correlation function39 of particles pair is computed as ρ12(τ)
= 〈~u1(τ) · ~u2(τ)〉/σ2. The directional cross correlation function
differs from a standard cross correlation function which char-
acterises the similarity between two signals separated by a
time lag. Here ρ12(τ) measures to what degree the velocity of
the 1st particle is correlated with that of 2nd particle at time τ,
while the two particles are initially separated by R0.

The two correlation functions measured in fully devel-
oped 2D turbulence are shown in Fig. 5. For the FWT
experiment, the autocorrelation function drops exponentially,
leading to an autocorrelation time of TL ∼ 0.1 s, Fig. 5(a), while
the velocities of particles in the pairs are correlated for much
longer time, τ > 4 s. Similar observations are made in the
EMT, Fig. 5(b). This suggests that a large number of pairs travel
together for a long time without separating, while any individ-
ual particle quickly forgets its initial direction. This agrees with
the conclusion of Ref. 40 which shows that the separation of
particles in pairs is governed by rare, extreme events and the
majority of initially close pairs are not dispersed.

FIG. 6. The cross correlation of the pairs at the initial time, ρ12(t0), as a function of
the initial separation. Circles and triangles are for FWT 60 Hz 1.6g (Lf = 4.4 mm)
and EMT 1.2 A (Lf = 9 mm) experiments, respectively.
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To characterize the ensemble of non-diverging pairs, we
compute the cross correlation functions for different ini-
tial distances R0. The temporal behaviour of the functions is
similar to that shown in Fig. 5. However, the initial correla-
tion ρ12(0) at τ = 0 changes substantially with the increase
in the initial separation, Fig. 6. In the FWT experiments
(circles in Fig. 6), at small initial separations, ρ12(0) is very
close to 1. The cross correlation coefficient ρ12(0) drops sub-
stantially (by a factor of 5) in the range R0/Lf = [0.5, 1.5],

until the velocity correlation reaches ρ12(0) ≈ 0.2 at R0 ≈ 1.5Lf .
A similar trend is observed in the EMT experiments (tri-
angles in Fig. 6). This suggests that non-diverging pairs
exist in bundles which have a typical width between 0.5Lf
and 1.5Lf . Particles in pairs are decorrelated if the distance
between them is comparable or larger than the forcing scale.
This can also be interpreted as the lack of the correla-
tion between fluid particles belonging to different coherent
bundles.

FIG. 7. [(a) and (b)] Autocorrelation func-
tions of a single particle Lagrangian
velocity, and [(c) and (d)] Lagrangian
velocity cross correlation function of par-
ticles in the pairs [(a) and (c) versus time
t and (b) and (d) versus t/TL]. Measure-
ments are performed in the FWT exper-
iments at the driving frequency of f 0
= 60 Hz at different vertical accelerations
a = (1–2)g, where g is the acceleration
of gravity. Lagrangian velocity cross cor-
relation function of particles in the pairs
(e) versus time t and (f) versus t/TL for
the EMT experiments at different current
0.4 A–1.2 A.
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The important role of the forcing scale in 2D turbu-
lence can be further revealed by performing measurements
of the velocity cross correlation functions in a broad range
of turbulent kinetic energies. The kinetic energy stored in
the broadband turbulent velocity fluctuations increases with
the increase in the energy injected into the flow at the forc-
ing scale. The single particle autocorrelation functions ρ11(τ)
are shown in Fig. 7(a) and have been studied in detail in
Ref. 24. As the forcing is increased, the Lagrangian veloc-
ity autocorrelation time TL gradually decreases. However if
the correlation time is normalized by the Lagrangian inte-
gral time TL, all autocorrelation functions collapse into one,
Fig. 7(b).

A similar collapse is observed for the velocity pair cross
correlation functions ρ12, Figs. 7(c) and 7(d). Despite the fact
that the pair cross correlation time is (50-70) times longer than
the single particle velocity autocorrelation time, the cross cor-
relation times expressed in the units of the Lagrangian integral

FIG. 8. (a) The ratio of LL/Lf as a function of the total kinetic energy in the flow U2.
The corresponding parameter, U2, TL, and Lf are listed in Table I. (b) The rate of
particle pair separation α where D ∼ tα as a function of initial separation R0/Lf for
FWT 1.6g experiment. The dashed line is an exponential decay fitting.

time TL appear to be the same regardless of the turbulence
kinetic energy U2. These conclusions are valid in both the EMT
and FWT experiments. The results for the EMT experiments
are shown in Figs. 7(e) and 7(f).

Similarly to the conclusion regarding the single parti-
cle dispersion,24 the above results suggest that the pair de-
correlation process is related to a single scale dynamics,
namely, it is determined by the Lagrangian scale of 2D tur-
bulence LL = UTL. The Lagrangian scale is related to the
forcing scale, LL ≈ 0.7Lf , for a broad range of experimen-
tal conditions.24 Here we re-plot the ratio of LL/Lf for the
experiments conducted in this paper in Fig. 8. It shows that
LL/Lf ≈ 0.75 for all the data points, except for the one
with the lowest kinetic energy. The deviation of the lowest
energy point in Fig. 8 from the trend is probably related to
the degree of turbulence (under-)development, as discussed
in Ref. 23. Turbulence still plays an important role in this
single-scale picture since the dispersion depends on the tur-
bulent velocity fluctuations. The higher the kinetic energy
of the flow U2, the faster particle pairs separate from each
other.

The effect of this single scale on the particle pair separa-
tion statistics is summarized in Fig. 8(b). The rate of particle
pair separation α where D ∼ tα is shown as a function of the
initial separation. It can be seen that α is strongly dependent
on the initial separation R0/Lf when R0 is smaller than Lf .
As shown in Fig. 8(b), α changes sharply from around 3 to 1.
The dashed line is an exponential decay fit. For initial separa-
tion R0 larger than LL (R0/Lf ∼ 0.8), the particle pairs are not
correlated and their pair dispersion is diffusive.

V. COHERENT BUNDLE ANALYSIS USING BRAIDS
To visualize particles in 2D turbulence which travel

without any substantial dispersion, we employ a recently
developed method of detection of coherent structures (here
bundles) based on the notion of topological braids.41,42 In the
so-called braid approach, a coherent bundle can be identified
as a set of trajectories which only entangle within themselves
and does not interact, in a topological sense, with external
trajectories; more details on topological entanglement of fluid
particle trajectories can be found in Refs. 42 and 43.

In a nutshell, the degree of entanglement of trajectories
within the flow can be quantified via a descriptor called the
braiding factor.43,44 The time evolution of the braiding fac-
tor can then be used for coherent structure detection. Mea-
surements of the braiding factor of wave driven turbulent
flows have recently been reported.44 It has been shown that
when trajectories are chosen such that their initial separa-
tion is larger than the forcing scale in 2D turbulence, their
rate of entanglement grows exponentially in time at t > 6TL.44
Here, we use the time evolution of the braiding factor com-
puted on subset of all the trajectories (including those sep-
arated by less than Lf ) to detect the presence of coherent
structure.

A visualisation based on the braid analysis is shown in
Fig. 9. All trajectories in a given part of the turbulent flow
appear as erratically entangled strands, Fig. 9(a). The braiding
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FIG. 9. Analysis of Lagrangian trajecto-
ries in FWT driven at f 0 = 60 Hz. The
turbulence forcing scale is Lf = 4.4 mm.
(a) A subset of Lagrangian trajectories
(1% of all trajectories are shown for clar-
ity). Coherent bundles detected from (a)
at different time intervals (b) (4–8)TL,
(c) (8–12)TL, (d) (12–16)TL. (e) A coher-
ent bundle identified for the time intervals
(0–16TL) by overlapping coherent bun-
dles obtained for 4TL segments, includ-
ing (b)–(d). The scale bar in panels
(b)–(e) shows the forcing scale.

factor is computed using a random selection of 100 trajecto-
ries out of a total of about 600 trajectories. The braids analysis
reveals that a very large number of trajectories closely follow
each other for rather long periods of time. Those bundle of
fluid trajectories have a typical with of Lf . Such a bundle is
shown in Figs. 9(b)–9(d), it is tracked for 16TL. These coherent
bundles experience occasional splitting into two bundles, yet
most strands stay together untangled and execute complex
collective motion, Fig. 9(e).

VI. DISCUSSION

Despite the long history of the subject, there are still
many outstanding questions about pair dispersion in both 2D
and 3D turbulence.45–48

In 3D turbulence experiments, it has been shown that
a pair of particles separate ballistically, 〈R2(t)〉 ∼ t2 for vary-
ing initial separations.49 It is concluded that, to observe
a Richardson-Obukhov scaling regime, a large separation
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between the Lagrangian time scale and the observation time
is required. However, it is difficult to confirm this in the labo-
ratory, because it would require turbulence levels beyond the
reach of current experiments. Turbulence at such levels would
also be in excess of most practical situations.

For laboratory 2D turbulence, though a particle sepa-
ration scaling close to 〈R2(t)〉 ∼ t3 was reported in seminal
experiments on pair dispersion,8 there are still numerous out-
standing questions. For instance, as noted in Ref. 46, it is
somewhat surprising that the experimental results of Ref. 8
show a t3 scaling in the pair dispersion for separation dis-
tances within the entropy range. In addition, the behaviour of
the Richardson parameter CR in 2D flows remains a controver-
sial issue.8,37,50 The problem in finding a robust Richardson-
Obukhov scaling in laboratory turbulence could be due to the
fact that the pair dispersion occurs not as a multi-scale self-
similar process as expected in an isotropic flow, but it is rather
governed by the underlying structures of the flow. Clearly,
such a process should be very different from the Richardson-
Obukhov phenomenology and would require alternative mod-
els to be considered, such as those discussed in Refs. 50–52.

In the present experiments, directional cross correla-
tion analysis of the particle pairs reveals the important roles
played by non-diverging particles in laboratory 2D turbulence
at Reynolds numbers (Re = ULf/ν) of the order of 100. This
result has been connected to coherent structures that take the
form of long-living bundles of fluid trajectories [Fig. 9(e)].

The importance of non-diverging pairs of particles in the
statistics of laboratory 2D turbulence has been noted earlier.
The evidence in support of the existence of clusters of non-
diverging particle pairs has been presented by Sokolov and
Reigada.40 By analysing experimental data produced in the
electromagnetically generated turbulence,7 the authors con-
cluded that the pair dispersion is connected with rare and
extreme events and the majority of pairs in the flow belong
to non-diverging clusters. Our experimental results are con-
sistent with this earlier analysis and show that the particle
pair dispersion is a process which depends on both the forc-
ing scale Lf and on the average turbulent velocity fluctuations
U2. In these flows, we observe a diffusive behaviour of the
pair dispersion when it is computed within the k−5/3 range of
the energy spectrum. Though the process is not self-similar,
turbulence plays an important role by storing the kinetic
energy in the inertial interval. An increase in the kinetic energy
substantially speeds up the pair dispersion. The presence of
bundles introduces a degree of anisotropy in the turbulent
flows that prevents the direct application of Richardson-
Obukhov relation between Eulerian and Lagrangian descrip-
tion. In this anisotropic turbulence, it would be interesting
to have a theoretical model that would relate the diffusive
behaviour observed in the pair dispersion with the inverse
cascade process.

Finally, it should also be noted that the majority of
laboratory experiments in 2D turbulence are performed at
much lower Reynolds number Re than those modelled numer-
ically.7,8,10,21,23,38 While numerical simulations and theory
focus on high Re, all laboratory experiments deal with flows
at Re = ULf/ν < 200. Recently, new results on a 2D turbulent

flow forced at even lower Reynolds numbers were reported.53
As in this study, the Lagrangian structure of such low Reynolds
turbulence is likely to be very different from the prediction
obtained in isotropic turbulence at high Reynolds numbers.

VII. CONCLUSIONS
In laboratory 2D turbulence, at modest Reynolds num-

bers (up to 200), fluid particles form coherent bundles which
determine the statistics of the pair separation. This local
anisotropy dominates both the pair separation and the exit
time statistics bringing important deviations from statistical
properties predicted in isotropic turbulence. We have recently
shown that these bundles influence strongly turbulent mix-
ing,54 the transport of inertial particles,55 or can even be uti-
lized to design turbulence driven rotors22 and self-propelled
objects.56
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