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Mixing of a passive scalar in a fluid (e.g. a radioactive spill in the ocean) is the irreversible

process towards homogeneous distribution of a substance. In a moving fluid, due to the

chaotic advection [H. Aref, J. Fluid Mech. 143 (1984) 1; J. M. Ottino, The Kinematics
of Mixing: Stretching,Chaos and Transport (Cambridge University Press, Cambridge,

1989)] mixing is much faster than if driven by molecular diffusion only. Turbulence is

known as the most efficient mixing flow [B. I. Shraiman and E. D. Siggia, Nature 405
(2000) 639]. We show that in contrast to spatially periodic flows, two-dimensional turbu-

lence exhibits local reversibility in mixing, which leads to the generation of unpredictable
strong fluctuations in the scalar concentration. These fluctuations can also be detected

from the analysis of the fluid particle trajectories of the underlying flow.
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1. Introduction

Mixing of a passive scalar is a transient process in which initially segregated pollu-

tant becomes homogeneously distributed in a fluid. Stirring a fluid greatly reduces

the mixing time. To understand mixing in a moving fluid it is essential to use

the Lagrangian description, i.e. a point of view of a moving fluid particle. This

trajectory-based representation of a flow, which captures both its kinematics and

dynamics, is suitable for studying stretching and folding, the two cornerstone pro-

cesses, which determine the distribution of a passive scalar concentration in the

process of mixing.2 These two deformation mechanisms are at play in a variety

of flows from simple stirring protocols to turbulent flows in a pipe.4–7 Despite an

impressive progress in understanding mixing in recent decades,8–13 the impact of
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turbulence on mixing remains a challenging question and several related issues re-

main outstanding. Among them is the question about the similarity and difference

between the mixing process in simple flows showing Lagrangian chaos, and in tur-

bulence. Another crucial question is what key properties of the underlying flow

best describe mixing dynamics in a turbulent flow? To address these questions, we

measure local concentration levels and analyze the dynamics of Lagrangian trajec-

tories to characterize turbulent mixing as interplay between extreme stretching and

compression.

2. Experiments and Results

We study mixing in electromagnetically driven planar flows, which exhibit a grad-

ual transition from spatially periodic flows to two-dimensional (2D) turbulence, as

the flow kinetic energy is increased.14 A fluorescent dye solution is placed on the

surface of the fluid in the shape of 4 circular blobs (each about 40 mm in diame-

ter) before the flow is energized. In these experiments, we study the mixing of the

dye during the slow stage in which the probability density functions (PDF) of the

dye concentration becomes self-similar. In these experiments, this stage is reached

about 40 s after driving a flow.

We compare two types of flows. A spatially periodic quasi-stationary flow is

produced at low electric current flowing through the top fluid layer (with a forcing

scale Reynolds number of Re = 30), while fully developed 2D turbulence is gener-

ated at a higher current.14 (Re = 112). In the first case, the flow is dominated by

the forcing scale vortices. In turbulence, vortices merge forming a broad range of

turbulent eddies represented by the Kolmogorov–Kraichnan k−5/3 spectrum in the

inverse energy cascade range.14

A dramatic difference between these two flows is observed when one measures

locally in space the dynamics of the dye concentration. The dye concentration in

two areas (shown in Figs. 1(a) and 1(b)) in these two flows are measured locally.

At low Reynolds numbers the concentration fluctuates modestly (Fig. 1(c)), while
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Fig. 1. (Color online) Patterns of the fluorescent dye in the process of mixing in (a) spatially

periodic and (b) developed turbulent flow. Temporal evolution of the local dye concentration Cloc

normalized by the mean concentration 〈Cloc〉 in (c) periodic and (d) turbulent flows. Blue and
red curves correspond to the regions of interest (2.9 × 2.9 mm) in Figs. 1(a) and 1(b) shown as
the blue and red boxes respectively.

1840028-2



May 9, 2018 14:23 MPLB S0217984918400286 page 3

Extreme concentration fluctuations in turbulent flow

t0 + . s0 4 + . s0 8 + s1.2

+ s1.6 + s2 + s2.4 + s3.3

0 12(m )mx

12

0

(m
)

m
y

aEMT 3A

0.1

1

10

0.8 0.9 1 1.1 1.2 1.3 1.4

t0
0.4s
0.8s
2s
2.4s
3.3s

P
D

F
(C

/<
C

>)

C / <C>

b

EMT 3A

Fig. 2. (Color online) (a) Image sequence of the fluorescent dye in turbulent flows. (b) PDF of

the normalized local concentration measured in the region marked as the red box (a). Red box

indicates the same region of interest as in Figs. 1(a) and 1(b).

turbulence shows strong intermittent concentration events (Fig. 1(d)). Note that

the time axes are normalized by the respective Lagrangian integral times TL.15

Strong bursts in the local dye concentration in turbulence are due to complex

topological reconnections of the stretched scalar filaments. Strongly elongated fil-

aments recoil in the vicinity of focal points, or spirals, as seen in Fig. 2(a). The

recurrence of bright concentration blobs, appearing randomly in time and in space,

represent local “unmixing” events, Fig. 2(a). The generation of bright spots leads

to the formation of strong tails in the local concentration PDFs (Fig. 2(b)). The

statistically averaged PDFs (in space and ensemble averaged) converge and have

exponential tails. In contrast, at low Reynolds number bright spots evolve in time

very slowly; they remain mostly stationary. Concentrations in this flow do not fluc-

tuate as much as they do in turbulence.

What statistics of the underlying flow can explain such sharp differences in

the mixing process? Extreme fluctuations appear as a result of intense stretching

(generation of long thin filaments) and topologically complex trajectory folding.

Stretching dominates at shorter time scales, while folding becomes more important

after fluid elements become more elongated.7 We study the stretching by analyzing

fluid particle trajectories. First, we check if the statistics of stretching events can

reveal differences in the concentration dynamics in these two flows. If the under-

lying velocity field is known, stretching fields based on the finite-time Lyapunov

exponents (FTLE) can be computed to characterize mixing.12–16 FTLE17,18 is the

logarithm of the stretching divided by the finite integration time τ , and they are

often used to characterize stirring on the ocean surface.19 FTLE is determined at

location x0 and time t0 as Λ(x(x0, t0), τ) = (1/τ) log(|δx(τ)|/|δx(0)|), where δx(τ)

is the separation at time t0 + τ between two points which were close together and

centered at location x0 at time t0.

We analyze FTLE for the same flows as those in Fig. 1. The integration time τ

is chosen shorter than the Lagrangian integral time TL to capture the full dynamic

range of Λ. Values of FTLE in turbulence are substantially higher than those in the
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Fig. 3. (Color online) (a) PDFs of the FTLE computed in the flows at low and high Reynolds

numbers plotted versus Λ/〈Λ〉. In both flows PDFs are well-fitted by the Weibull distributions

(dashed lines). Instantaneous PDFs of the FTLE (integration time τ = 0.6TL) at different mo-
ments of time in (b) spatially periodic flow and (c) in turbulence.

periodic flow. The two PDFs of Λ normalized by their mean values 〈Λ〉 are illus-

trated in Fig. 3(a). The figure shows spatially and ensemble averaged PDFs of the

forward and backward FTLEs. Forward FTLEs characterize the divergence of the

adjacent fluid particle trajectories (stretching), while the backward FTLEs char-

acterize the convergence of trajectories computed by reversing time (compressive

motions). Statistically averaged PDFs of forward and backward FTLE are effec-

tively the same. This confirms that the studied flows are incompressible 2D flows

since the sum of positive and negative Lyapunov exponents vanishes, as it should.20

Probabilities of large Λ are notably higher in turbulence, as seen from the PDF

tails. If we plot these PDFs without the ensemble averaging, as in Figs. 3(b) and

3(c), substantial differences in the PDF tails are observed in turbulence and far less

in the periodic flow. This behavior is similar to the dynamics in the tails of the

concentration PDFs of Fig. 2(b). The PDFs of the FTLE reveal differences at short

times (t < TL) in the probabilities of extreme stretching (and compression) events

in the two flows.

3. Summary

The above results highlight the difference in the dynamics of mixing in regular and

in turbulent flows, namely the high concentration fluctuation level in turbulence

and the generation of spontaneous extreme concentration spots. The observation of

the high concentration fluctuation is correlated with the fluctuation in the stretch-

ing/compression field through the measurement of the FTLE field.
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