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This paper presents a review of experiments performed in three-dimensional flows that show behaviour
associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy
cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and
the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the
vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or
externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown
to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system,
a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.5000863]

I. INTRODUCTION

Considering an idealized two-dimensional (2D) fluid,
Kraichnan predicted that energy flows towards small wave
numbers when turbulence is forced at some intermediate wave
number kf .1 This transfer of spectral energy towards large
scales was named the inverse cascade of energy. When 2D
turbulence is spatially confined, the spectral energy accumu-
lates at the box size and large-scale vortices are formed. This
phenomenon is referred to as spectral condensation.1 While
the inverse energy cascade and the spectral condensation have
been confirmed in ideal numerical simulations,2–7 one can ask
the question: Is it possible to create the inverse cascade and
the spectral condensation in experiments?

The first attempts to answer this question aimed at gen-
erating flows in a very thin layer of fluid. It seems logical
to think that the thinner the fluid layer, the better is the
prospect to obtain quasi-2D flows. This principle has inspired
numerous experiments based on electromagnetically driven
flows in conducting fluids8–17 or exploring the hydrodynamical
properties of soap films.18–22 Although the approach sounds
simple, it triggers a lot of challenging questions: How thin
should the fluid layer be? How flat should the liquid surface
remain?

Paradoxically, during the past ten years, experimental
studies have shown that 2D turbulence actually exists in seem-
ingly unfavourable configurations. Two of the most striking
examples are flows generated in thick fluid layers and flows
at a liquid surface perturbed by Faraday waves, both reviewed
here.

In a thick layer of fluid, the flow is generally three-
dimensional (3D). However, it can show features of 2D tur-
bulence close to a fluid surface if the latter remains flat.23 This
thin layer of 2D turbulence is capable of condensing when
it is bounded. The condensation can then enforce the flow
two-dimensionality over the entire fluid thickness.24 A similar
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phenomenology is observed when a large-scale flow is exter-
nally imposed on a 3D flow in a thick layer.24

A surface perturbed by Faraday waves produces flows
that can be visualised with floating particles; surprisingly the
motion of these floating tracers reproduces remarkably well
properties of 2D turbulence.25–29 This discovery has greatly
improved the capacity of experimental modeling of 2D tur-
bulence. For instance, the combination of electromagnetically
driven and wave driven turbulent flows has widened the range
of forcing scale and flow kinetic energy achievable. Exper-
iments have been performed combining the two methods to
revisit the single-particle dispersion and explore topological
aspects of 2D disordered and fully turbulent flows.30–33

In this paper, we review experimental results obtained in
the electromagnetically driven and Faraday wave driven turbu-
lence with an emphasis on the existence of the inverse cascade
in seemingly 3D systems. A comprehensive review on 2D tur-
bulence can be found in Ref. 34. The interaction of the energy
cascade with large-scale structures generated through spec-
tral condensation or externally imposed is discussed. We also
present some connections recently uncovered between wave
physics and 2D hydrodynamic turbulence. These discoveries
extend the domain of applications of Kraichnan’s seminal ideas
on 2D turbulence.

II. EXPERIMENTAL SETUPS

Electromagnetically driven turbulence [EMT, Fig. 1(a)]
is produced in layers of electrolyte (Na2SO4 water solution)
by running electric current across a fluid cell (square con-
tainer 30 × 30 cm) placed above an array of permanent mag-
nets.14,15,24 The Lorenz force produces horizontal vortices that
interact with each other generating complex flows. By chang-
ing the current density, one can control the degree of turbulence
development. The energy is injected into the flow at a scale, the
forcing scale Lf , which is approximately equal to the distance
between the magnets. Two configurations can be employed in
the EMT experiments: (1) a single layer of electrolyte flow-
ing upon a solid bottom and (2) a double-layer configuration:
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FIG. 1. Experimental setups for (a) electromagnetically driven turbulence
(EMT) and (b) Faraday wave driven turbulence (FWT).

a layer of electrolyte is placed on top of a layer of denser
(specific gravity SG = 1.8), non-conducting low-viscosity fluid
(FC-3283). In this case, flows are studied in the upper layer
that slips on the lower one. This configuration greatly reduces
the dissipation related to the solid bottom wall of the container
(an intrinsic 3D effect).

The experimental setup of the Faraday wave driven tur-
bulence (FWT) is shown in Fig. 1(b). Faraday waves are
generated in a container filled with water up to its brim. The
water depth is 30 mm and care was taken that the liquid con-
tact line was pinned to the edge of the container, i.e., there
is no meniscus. The container is shaken vertically. The verti-
cal oscillation is monochromatic with a frequency fixed in the
range f s = (30–110) Hz and a peak-to-peak vertical accelera-
tion a in the range a = (0.1–3)g, where g is the gravitational
acceleration. Above a given acceleration threshold, Faraday
waves are parametrically excited at half the shaking frequency.
The waves are modulationally unstable and the surface circu-
lar ripples quickly disintegrate into an assembly of oscillating
solitons or oscillons.35,36 The oscillonic field gets more and
more disordered at higher accelerations.

In both experiments, the motion of the fluid is visualised
by placing a floating particle with a diameter of 50 µm or
150 µm on the water surface. The use of surfactant and plasma

treatment ensures initial homogenous distribution of the tracer
particles. In the EMT experiments, to visualise the 3D motion
inside the flow, tracer particles are suspended in the fluid. A
horizontal or vertical laser sheet is used to illuminate the flow
under investigation.

The particle motion is captured by using a high-resolution
fast camera (such as Andor Neo sCMOS) as described in
Refs. 26 and 30. In the Faraday wave experiments, the dif-
fusing light imaging technique is used to visualize simultane-
ously the surface ripples and floating tracer particles.29 A 2%
milk solution added to water provides sufficient contrast for
the parametrically excited waves to be observed. The veloc-
ity fields and particle trajectories are obtained using particle
image velocimetry (PIV) and particle tracking velocimetry
(PTV).

The forcing mechanism in two-dimensional experiments
is often a point of discussion since the Kolmogorov-Kraichnan
theory of turbulence considers two-dimensional flows driven
by white-in-time random force. The experimental realization
of such a paradigm is obviously quite challenging. In EMT
experiments, since the polarity of the magnets are predefined,
there is a common belief that the forcing is highly correlated
in time. To circumvent this issue, there were some attempts
to generate random forcing by randomising the polarity of
the current in time.9 Later, it has been shown that even the
basic configuration for EMT experiments does produce ran-
dom forcing. Indeed, though the forcing vortices are initially
generated at fixed positions determined by the array of per-
manent magnets, these vortices are then pushed around and
randomised by shearing and sweeping effects.13 In Faraday
waves, the horizontal array of forcing vortices can only be
observed transiently.29 After that, the vortices are pushed
around and randomised in a similar fashion to what is observed
in EMT.

III. EXPERIMENTAL MODELING OF 2D TURBULENCE:
AN ONGOING DISCUSSION

Early experiments aimed at approaching 2D fluid motion
by confining the liquid along one of its three dimensions.
One elegant example is found in experiments based on
flows in soap films that are typically few microns thick.18–20

Although the hydrodynamics of soap films is a complex
subject, the versatility of this experimental setup is remark-
able. For instance, decaying turbulence has been investi-
gated in a so-called soap film channel driven by gravity,19

while a k�5/3 spectrum can be generated by placing rough
walls on the edge of the 2D channel.21 Recently flows in
soap film channels have been used to investigate the exis-
tence of a link between the frictional drag and the spec-
tral exponent of the velocity fluctuations.20,21 More details
about 2D turbulence in soap films can be found in detailed
reviews.22,34

Another approach was based on generating flows in a hor-
izontal layer of mercury.8 This conducting liquid was placed
in a vertical homogeneous magnetic field while the flow
was forced by applying a spatially varying electric field. In
this configuration, a 2D turbulent flow can be produced, and
Kolmogorov spectra were observed as well as spectral
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condensation in the bounded domain. A similar setup was
developed using a thin layer of electrolytic fluid over a checker-
board array of magnets of opposite polarity.9,10 When an
electric current runs through the electrolyte, a fluid motion
is generated by the Lorenz force. Although flows pro-
duced in this system show features of 2D turbulence, they
remain strongly affected by dissipative and 3D effects. In
that respect, it was realised that two thin layers of elec-
trolytes of different densities can be used to reduce substan-
tially the bottom friction.10 A more stable configuration is
actually achieved by placing a thin layer of electrolyte on
top of a denser layer of a non-miscible and non-conducting
fluid.12,15,24

In these seminal studies, the guiding principle is clear:
the thinner the fluid layer, the better the prospect to realise
quasi-2D turbulence. However, the results shown in this
review reveal that 2D turbulence does exist in thick fluid
layers. This surprising observation is actually strongly sup-
ported by the recent discovery of Faraday wave driven
turbulence.

IV. 2D TURBULENCE IN THIN FLUID LAYERS:
THE DOUBLE LAYER CONFIGURATION

For a thin layer of electrolyte in a double-layer configura-
tion, the inverse energy cascade and the spectral condensation
have been reported.14,15 In these experiments, turbulence is
generated electromagnetically in the upper layer of the con-
ducting fluid whose thickness does not exceed 4 ∼ 5 mm
[Fig. 1(a)]. The magnets are placed 9 mm apart, giving a forc-
ing scale of Lf = 9 mm and a forcing wave number of kf ≈ 750
rad/m.

An example of the kinetic energy spectrum is reproduced
in Fig. 2(a). The spectrum shows a power-law scaling close to
k�5/3 for k < kf for the inverse energy cascade range and close
to k�3 for k > kf for the enstrophy range. The small peak at the
small wave number represents a weak condensation at large
scales which develops as a result of the low dissipation in the
double-layer configuration.

The Kolmogorov flux relation is used to measure the
energy flow. In homogeneous 2D turbulence, spectral energy
flux is expressed via the third-order moment of the velocity
structure function: ε = S3/r = 2/3S3L/r, where S3 = (S3L

+ S3T )/2, S3L = 〈(δVL)3〉, and S3T = 〈δVL(δVT )2〉, respec-
tively. Here δVL and δVT are, respectively, longitudinal (L) and

FIG. 2. (a) Kinetic energy spectra of turbulence and (b) third-order structure
function measured in a double-layer EMT experiment.

transverse (T) components of the velocity difference between
points separated by r. Angular brackets denote space and time
averaging. For 3D turbulence, the third-order structure func-
tion is S3 = −4/5εr. The sign and linearity of the third-order
structure function have often been used as an indication of
the direction of the energy flux, hence the dimensionality. The
third-order structure function measured in EMT is shown in
Fig. 2(b). It uncovers the presence of an inverse energy cascade
for which S3 is a positive linear function of r, from 0.01 m to
0.04 m.

It should be noted that the third-order structure func-
tion S3 is rarely computed in experiments on 2D turbu-
lence. One of the difficulties is related to obtaining reliable
statistics, as explained in Ref. 9. Another reason is related
to the presence of coherent structures, such as a spectral
condensate. It is important to subtract coherent components
from the instantaneous velocity fields to recover the correct
statistics of the turbulent velocity fluctuations. Otherwise the
velocity differences contain contributions from the spatially
inhomogeneous vortex flows. Then the statistically averaged
higher-order moments, or structure functions, become highly
affected.

We have demonstrated that the presence of large-scale
flows substantially modifies S3 and even affects its sign.14,15

In this case, the flow velocity and its increments contain both
mean and fluctuating velocity components, δV = δV̄ +δṼ . The
second-order structure function contains not only the second
moment of velocity fluctuations δṼ2 but also two other terms,
〈δV2〉 = 〈δV̄2 +2δV̄δṼ +δṼ2〉. The second term averages out.
The third-order moment is affected even more: 〈δV3〉 = 〈δV̄3

−3δV̄2δṼ +3δV̄δṼ2−δṼ3〉. Again, the term with δṼ averages
to zero, while the terms 〈δV̄3〉 and 〈3δV̄δṼ2〉modify the third
velocity moment due to the presence of the mean shear flow.
This is also the case in situations where large coherent flows
coexist with turbulence, such as in the planet atmosphere and
in thick fluid layers with self-generated or externally imposed
flows.24 The effect of mean flow on the structure functions may
be more complicated when the mean flow fluctuates in time and
space.

V. 2D TURBULENCE IN THICK FLUID LAYERS

Real fluid layers differ from the ideal 2D model because
they have finite depths and a nonzero dissipation. The effect of
the layer thickness on turbulence driven by 2D forcing has been
studied in 3D numerical simulations.37 It has been shown that
in “turbulence in more than two and less than three dimen-
sions,” the injected energy flux splits between a 3D direct
cascade and a 2D inverse cascade. At ratios of the layer depth h
over the forcing scale Lf above h/Lf ∼ 0.5, the inverse energy
cascade is greatly reduced. When the inverse energy flux is sup-
pressed, the energy injected into the flow is transferred towards
small scales by the direct cascade, developing the 3D Kol-
mogorov k�5/3 spectrum at k > kf . On a side note, the transition
from 3D to 2D phenomenology in Rayleigh-Taylor turbulence
has recently been discussed along a similar line of thought, in
particular, the ratio of the width of the mixing layer to the scale
of confinement was shown to be a control parameter of such a
transition.38
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FIG. 3. The particle streaks for EMT experiments in single fluid layers of
three different thicknesses (side view). (a) h/Lf = 0.16, (b) h/lf = 0.33, and (c)
h/lf = 0.5. The forcing scale is 30 mm.

Physically the three-dimensionality of the flow is deter-
mined by the amount of 3D motion in the layer. This motion
may naturally develop in the layer, as in Ref. 37, but it can
also be injected into the flow by non-2D forcing, or it can be
generated by shear-driven instabilities in the boundary layer.

Figure 3 shows particle streaks measured in experiments
using a single fluid layer with varying thickness. In these exper-
iments, the forcing is two-dimensional in the horizontal plane.
For small h/Lf , the flow is reasonably two-dimensional. With
the increase of the layer thickness, three-dimensional motions
appear naturally in the layer. Note that though there is devel-
opment of three-dimensional motions, there is no observation
of the forward energy cascade of 3D turbulence. This is due to
the low turbulence level in experiments, while numerical sim-
ulations37 considered that inviscid fluids thus had an infinite
Reynolds number.

The turbulence decay rate was proposed to be an accu-
rate measure of the flow dimensionality.17 In our experi-
ments, the energy density of the flow is computed as E =
(2N2)−1 ∑

i
∑

j V2
i,j, with N as the size of the 2D PIV grid on

which the velocity is measured. The damping rate of the flow
is estimated from the energy density decay after switching off
the forcing at t = t0: Et = Et0 e−α(t−t0). The experimentally mea-
sured decay ranges from α = 0.03 s�1 to 0.3 s�1 depending on
the layer thickness and flow configuration.

Experiments in a single thick fluid layer show that eddy
viscosity increases damping in finite-depth fluid layers com-
pared with the quasi-2D model prediction.17 This increase can
be used to probe the flow dimensionality. For a large value
of the h/Lf ratio, the increased degree of three-dimensionality
leads to the suppression of the inverse energy cascade.

The situation is quite different when the dissipation at the
bottom of the container is strongly reduced. Experimentally,
it is achieved in the double fluid layer configuration where the
lower layer consists of a dense non-conductive fluid. We con-
ducted experiments where the top layer thickness is set to more
than half the forcing scale h/Lf ≈ 0.75.24 Particle streaks mea-
sured in this top layer are shown in Fig. 4. At the beginning of
an experiment, t = 5 s, 3D motion is clearly seen in the flow. As
turbulence develops, t > 5 s, the vertical component of the par-
ticle streaks gradually decreases, and the flow becomes planar
[see Figs. 4(b)–4(d)].

In the horizontal plane, at t > 20 s, a coherent flow devel-
ops over the entire domain24 as shown in Figs. 5(a) and 5(b).

FIG. 4. Temporal evolution of the particle streaks in the top layer of thick
double-layer experiments, view from the side. (a): t = 5 s, (b) t = 20 s,
(c) t = 30 s, and (d) t = 35 s. Lf = 9 mm and h = 7 mm.

It signals the presence of a strong spectral condensation. The
phenomenon is favoured by the low dissipation in this thick
double-layer configuration. The kinetic energy spectrum at
t = 20 s has a strong peak at the low wavenumber range,
Fig. 5(c). The corresponding third-order structure, shown in
Fig. 5(e), is negative and does not show any linear trend in
space. As mentioned earlier, it is essential to subtract the
mean flow from the calculation of any statistical descriptor
when turbulence coexists with a coherent flow. The result-
ing mean-subtracted spectrum is shown in Fig. 5(d) and it
possesses a k�5/3 power scaling. Likewise the third-order
structure function becomes a positive and linear function of
space, r [Fig. 5(f)]. The observation of an inverse energy
cascade in the thick fluid layer is therefore correlated with
the spectral condensation of turbulence in the horizontal
plane.

A similar phenomenology has been reported in a sin-
gle fluid layer with an externally imposed flow.24 Exper-
iments were performed in a single layer of electrolyte,
h = 10 mm, Lf = 9 mm with a much larger boundary, and
L = 300 mm, to avoid spectral condensation. In this case, a
large-scale vortex is imposed by using a large magnet. The
timeline of the experiment is shown in Fig. 6(a) as follows:

• First, turbulence is excited.
• Then, a large vortex (150 mm diameter) is imposed on

the flow by placing a magnetic dipole 2 mm above the
free surface.

• Finally, the large magnet is removed and the large
vortex decays, while turbulence continues to be forced.

As the magnet blocks the view, the measurements are per-
formed during the turbulence stage and during the decay of the
vortex.

The streak of fluid tracers in the y-z direction shows
the presence of 3D motions in the pure turbulence regime
[Fig. 6(c)]. The 3D motion is suppressed when the large
magnets are placed above the liquid surface [Fig. 6(d)]. The
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FIG. 5. Particle streak in the horizontal plane of the
double-layer experiment at (a) 5 s and (b) 20 s [to be com-
pared with Figs. 4(a) and 4(b)]. Kinetic energy spectra of
the horizontal flow and the third-order structure function
[(c) and (e)] before the mean subtraction and [(d) and (f)]
after the mean subtraction. lf = 9 mm and h = 7 mm. The
box size is 120 mm.

flow becomes 3D again as the large-scale vortex fades away,
Fig. 6(e). The kinetic energy spectra and the third-order
moments have been studied. Initially (turbulence without vor-
tex), the spectrum is substantially flatter than k�5/3 [Fig. 6(f)].
After the large vortex is imposed, the spectrum shows a strong
peak at low wave numbers. However, by using the mean
subtraction, one can recover the k�5/3 2D inverse cascade spec-
trum, as shown in Fig. 6(g). The third-order moment undergoes
an even more pronounced change after the imposition of the
large vortex: S3 computed after the mean subtraction is much
larger than during the turbulence stage, and it becomes a pos-
itive and linear function of r over a wide range of scales,
Fig. 6(h). These findings are consistent with our observation
in double-layer experiments. Thus the imposed flow enforces
planarity and strongly enhances the inverse energy flux.

Figure 6(b) shows results related to the turbulence energy
decay measured in three different configurations: in the pres-
ence of turbulence only, of an external flow coexisting with tur-
bulence, and of an external flow without turbulence. The decay
rate of the kinetic energy is high (α = 0.3 s�1) for the turbu-
lence case. This is consistent with that in a single layer, where
3D motion increases dissipation through the eddy viscosity.
For the large external flow, the decay rate is α = 0.09 s�1.
When the external flow coexists with turbulence, the decay
rate is smaller at α = 0.06 s�1, which suggests that the tur-
bulence feeds the large-scale flow through the inverse energy
cascade. This is a very interesting result: the large-scale vortex
can secure its energy supply by suppressing vertical motions
and enforcing the two-dimensionality and the inverse energy
cascade.
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FIG. 6. (a) Timeline of the experiments
showing the three stages: turbulence,
turbulence + vortex, and vortex decay-
ing with turbulence. (b) The decay of
the kinetic energy of the flow in differ-
ent experimental conditions: turbulence
only, external flow only, and turbulence
and external flow. [(c)–(e)] Vertical
streaks of the fluid particles at different
times of the experiments. Spectra of the
single layer experiments (f) in the tur-
bulent case and (g) in the presence of
the mean flow, with (circles) and with-
out (diamonds) the mean subtraction.
(h) The third-order structure function
with (circles) and without the external
flow (squares). S3L with the external
flow case is calculated after the mean
subtraction.

The observation of an inverse energy cascade in thick fluid
layers is due to the strong suppression of vertical eddies in the
presence of an imposed or self-generated flow.24 The vertical
shear Ωs = d(Vh)/dz destroys vertical eddies for which the
inverse turnover time is less than Ωs.

The observation of an inverse energy cascade in thick fluid
layers under the large-scale shear flow may be relevant for
geophysical flows and engineering applications. An interest-
ing example is the wavenumber spectrum of wind velocities
in the Earth atmosphere measured near the tropopause,39,40

which shows E(k) ∼ k−5/3 in the mesoscale range (10-500
km) and a strong peak at the planetary scale of 104 km. Numer-
ous hypotheses have been proposed to explain the mesoscale
spectrum, with most arguments centred on the direct versus the
inverse energy cascade.4,41 The shape of the spectrum alone
cannot resolve this issue since both the 3D Kolmogorov direct
cascade and the 2D Kraichnan inverse cascade are indistin-
guishable E(k) ∼ k−5/3. Direct processing of atmospheric data
gave S3(r) < 0 for the range of r in the mesoscales, thus favour-
ing the direct cascade hypothesis.42,43 However, the mesoscale
turbulence in the Earth atmosphere should be affected by the

large-scale flow regardless of its origin or stability, similar to
the much simpler laboratory experiments. The subtraction of
the mean flows, necessary for the correct flux evaluation, has
not been done for the wind data. This leaves the question about
the source of the mesoscale energy unresolved.

Moreover, these results may be relevant not only for thin
layers but also for boundary layer flows with turbulence gener-
ated by surface roughness, convection, or other sources. In situ
aircraft measurements in the hurricane boundary layer have
recently revealed a height-dependent transition of the flow
from 3D to 2D turbulence in the presence of the large-scale
vortex.44

VI. 2D TURBULENCE IN FARADAY WAVES

Ripples that appear on the surface of a vertically vibrated
liquid are known as Faraday waves. They are widely used to
study a broad range of phenomena, such as pattern formation,
solitons, extreme wave events, and others.35,36,45–50 Another
interesting aspect of this system is that Faraday waves produce
slow horizontal flows. The dispersive behaviour of fluid tracers
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FIG. 7. (a) Wave number spectra of the
kinetic energy of the horizontal flow and
(b) power spectra of the surface wave
elevation at f s = 60 Hz (at three verti-
cal accelerations a = 0.7, 1.2, and 1.6g).
(c) Kinetic energy spectra at different
driving frequencies f s = 30, 45, and
60 Hz. (d) Third-order structure func-
tion for two different forcing scales at a
driving frequency of f s = 30 Hz. The
water depth is 30 mm and the wave
height (standard deviation of the eleva-
tion field) ranges from 0.4 to 2 mm in
these experiments.

on a liquid surface perturbed by those waves was investigated
two decades ago in a series of seminal papers.51–53

It has recently been found25,27,28 that the horizontal
motion of floating particles on the surface of Faraday waves

shows several properties consistent with the fluid motion in 2D
turbulence. This turbulent horizontal transport was referred
to as Faraday wave driven flows. In particular, a k�5/3 spec-
trum has been reported. In the first study,25 the experiments

FIG. 8. Generation of a coherent vortex, or spectral con-
densate, over the entire container in Faraday wave driven
turbulence. Temporal evolution of particle streaks on the
surface of Faraday waves at (a) t = 2 s, (b) t = 5 s,
(c) t = 12 s, and (d) t = 20 s after the wave appearance.
Experimental parameters are f s = 39 Hz and a = 0.3g.
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were conducted in thin fluid layers (i.e., thickness of the water
smaller than the Faraday wavelength) and emphasis was put
on the small amplitude of the waves. However, the generation
of Faraday wave driven turbulence (FWT) was later confirmed
to exist in experiments in deep water and steep waves,26,29 a
configuration that is seemingly unsuitable for 2D turbulence.

Figure 7 shows measurements performed on FWT. In
Fig. 7(a), the kinetic energy spectra of the flow at f s = 60 Hz
are shown with the corresponding power spectra of the surface
wave elevation in Fig. 7(b). While the wave elevation spec-
tra are localised around kw ≈ 800 rad/m, the kinetic energy
spectra of the flows show a scaling of Ek ∼ k−5/3, consistent
with a 2D inverse energy cascade range.15,30,31 The energy
seems to be injected into the system at half the wavelength,
i.e., kf ≈ 2π/(λ/2), where λ = 2π/kw is the Faraday wave-
length. Thus, the forcing scale can be controlled by changing
the frequency of the shaker as confirmed in Fig. 7(c). The verti-
cal acceleration a controls the level of energy injection into the
flow. An increase in a leads to an increase in the total horizon-
tal kinetic energy stored in the inertial range, Fig. 7(a). These
observations strongly suggest that energy can be transferred
inversely to larger and larger scales in Faraday wave driven
flows. This fact is ascertained by measuring the Kolmogorov
flux relation. The third-order structure function measured in
FWT is shown in Fig. 7(d). It uncovers the presence of an
inverse energy cascade for which S3 is a positive linear function
of r, from 0.0075 m to 0.05 m.

The existence of the inverse energy cascade in a bounded
flow is a prerequisite for spectral condensation, i.e., the accu-
mulation of the turbulence energy at the box size. In Ref. 26, it
was reported that Faraday flows can self-organize into a large
coherent vortex at the container scale, as shown in Fig. 8. The
sequence of images illustrates the generation of a condensate
from initially small-scale vortices [Fig. 8(a)] to a wide hier-
archy of scales [Fig. 8(b)], which ultimately produces a large
coherent vortex occupying the entire box [Fig. 8(d)].

Until recently, what remained unknown is how and why
waves produce 2D turbulence, in particular, how the energy
is injected into horizontal flows from vertical oscillations, and
why it is injected in a narrow range of scales leaving it to turbu-
lence to spread this energy over a broad inertial interval. In Ref.
29, some of these shortcomings were addressed. It was shown
that Faraday waves can produce a lattice of counter-rotating
vortices [see Fig. 9(a)] which is the fuel of the 2D turbulent

flow. The characteristic scale of these vortices corresponds to
half the Faraday wavelength. It gives an intermediate scale for
the injection of energy.

In a similar vein, the generation of stable horizontal
vortices has been investigated recently in small amplitude
standing waves produced by two orthogonal paddles that oscil-
late horizontally.54 By tuning the temporal phase of the two
orthogonal paddles, it was shown that a periodic pattern of
rotating waves can be created. On the fluid surface, such
waves rotate within half-wavelength cells. Those waves pos-
sess local angular momentum that is transferred to the matter.
This mechanism produces particle trajectories in the form of
a spatially periodic lattice of vortices as shown in Fig. 9(b).
These experiments prove that the deformation of a fluid inter-
face is a powerful and versatile way for vorticity creation in a
2D flow.55–57

Clearly the mechanism of flow generation by Faraday
waves or nonlinear waves in general needs to be further inves-
tigated.58 Several nonlinear models based on potential or vis-
cous flows near a free surface have been proposed.52,55,59–61

An interesting path could be related to the Stokes drift induced
by the variation of the temporal phase of 2D quasi-standing
waves as shown in Fig. 9(b).54 In that respect, the emergence
of disorder in Faraday waves has recently been related to phase
instability.62

VII. COMPRESSIBILITY OF EMT AND FWT

Faraday flows are indisputably three-dimensional
(Fig. 10). Due to the vertical wave oscillations, the divergence
computed on the horizontal components of the velocity field
is clearly non-zero when measured on the time scale of a wave
period. The 2D turbulence theory assumption of divergence-
free flows is thus violated at this time scale. In this section, we
investigate the compressibility of the horizontal velocity field
of both EMT and FWT, in particular, its time dependence.

We quantify the divergence of the horizontal velocity field
by using the 2D local compressibility parameter C(x, y) and
its spatial average C, defined as63

C(x, y) =

〈
(∂xvx + ∂yvy)2 〉

)
Tav

〈(∂xvx)2 + (∂xvy)2 + (∂yvx)2 + (∂yvy)2〉Tav

, (1)

C = 〈C(x, y)〉x,y, (2)

FIG. 9. (a) Surface particle streaks in the initial stage of
the flow driven by Faraday waves excited at the water
surface at f s = 10 Hz and a = 0.04g in a 40 × 40 cm2

square container. (b) Surface particle streaks measured
in a standing wave field produced in a square container.
The waves are produced by two orthogonal paddles that
oscillate horizontally at f = 4.58 Hz. The relative temporal
phase between the paddles is set to 90◦.
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FIG. 10. Perspective view of a three-dimensional particle trajectory followed
for 1.6 s at a frame rate of 587 frames/s in a wave field parametrically excited
at a = 1.6g and f s = 60 Hz. Pink and blue wave fields correspond to two
consecutive phase extrema of the waves that are separated in time by one
period of the shaker oscillation (Faraday waves are parametrically excited
waves).29

where 3x, 3y are the two-dimensional velocity components at
the surface. 〈· · · 〉x,y denotes average over the 2D surface, and
〈· · · 〉Tav denotes averaging over time Ta3 .

The meaning of the compressibility parameter C can be
illustrated by using simulated velocity fields. For that purpose,
we numerically generate two ideal antagonistic flows: a pure
solenoidal velocity field in which 2D divergence is everywhere
zero [Fig. 11(a)] and a flow produced by a periodic array of
source and sink points in the plane [Fig. 11(b)]. The first one is
an ideal 2D flow, while the latter is a synthetic way to model 3D
effects in a 2D velocity field. For the divergence-free flow, the
compressibility parameter C(x, y) is zero in every point. For
the source/sink velocity field, the corresponding local C(x, y)

parameter shows strong spatial variations taking values from 0
to 2 [Fig. 11(b)]. The local compressibility is extremal, equal to
2, at the location of the source/sink points. The spatial average
gives C = 0.5. When floating particles are placed into such a
flow and initially uniformly distributed over the surface, they
will eventually gather at the sinks and flee the sources. In a
sense, floating particles on the surface probe the compressibil-
ity of the horizontal velocity field. We can use the parameter
C to characterise the dimensionality of the flow. The lower
the value, the better the 2D approximation for an experimental
flow.

The compressibility parameter computed in the EMT
double-layer configuration is shown in Fig. 11(c). For
experiments at a current over the range I = (0.2–1)A, the
kinetic energy of the flows increases from 7 × 10−6 m2/s2 to
3.6 × 10−5 m2/s2. The compressibility parameter C of the
flows stays almost constant at a low value of 0.1. The param-
eter C is independent of the averaging time Ta3 in the EMT
experiments, as shown in Fig. 11(d).

In the Faraday wave experiments, the velocity field pos-
sesses a vertical component because the wave height oscillates
vertically during one Faraday period. This vertical oscillation
generates a non-zero compressibility of the horizontal veloc-
ity field. These effects are reflected in the importance of the
averaging time Ta3 for the calculation of C in FWT. In the
FWT experiments [Fig. 11(d)], C takes a value as large as 0.5
when it is not time averaged. When averaged over a couple
of Faraday wave periods, C quickly collapses to small values.
Quantitatively, C decreases to∼0.1 when averaged over 4 wave
periods.

This is an important result: the parameter C averaged
over few wave periods in FWT takes a value similar to that
measured in double-layer EMT, which is widely accepted as a

FIG. 11. (a) Velocity field of a pure solenoidal flow. (b)
Velocity field of a flow generated by a periodic array
of sources and sinks, and its associated compressibility
map C(x, y). Compressibility parameter C measured (c)
at various flow kinetic energies in the double-layer EMT
experiments, and (d) in the double-layer EMT experi-
ments and in the FWT for different integration times Ta3
expressed in wave periods TFW .
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good laboratory model of 2D flows. This confirms the quasi-
2D and quasi-incompressible nature of the slow (compared to
the wave frequency) horizontal flow produced by the Faraday
waves. Moreover we also note that our floating tracers stay
homogeneously distributed over the water surface perturbed
by Faraday waves. This is strong evidence that the 2D flow
generated by the waves can be considered as incompressible
since a compressible surface flow would induce substantial
floater clustering. Indeed in Refs. 63–65, it was shown exper-
imentally that floaters driven by an underlying 3D turbulence
form massive ribbon-like clusters and their motion at the fluid
surface exhibits properties of a compressible fluid (in such
flows, it was reported that C ≈ 0.5). In the same vein, the
dimensionality of Faraday flows has been indirectly tackled
in a study of the Belousov-Zhabotinsky chemical reaction in
the presence of such flows. The generation of spiral and tar-
get patterns was reported, a phenomenon that only occurs in
two-dimensional systems.27

VIII. WAVE DYNAMICS—2D TURBULENCE COUPLING
IN FWT

In this part, we take advantage of recent experimental
advances in the generation of Faraday wave driven flows to
compare simultaneously the motion of the waves with that of
the particles of which they are comprised.66

It has been shown that Faraday waves can be consid-
ered as an assembly of oscillating solitons or oscillons.35,36 A
method has been developed to track the horizontal motion of an
individual oscillon over time [Fig. 12(a)].36,66 This trajectory
based representation of the wave motion can be understood as
a characterization of the horizontal motion of the local wave
phase. The trajectories of several oscillons followed for 20
Faraday periods are shown in Figs. 12(b) and 12(c) for two
different accelerations. First, it can be seen that the oscillons
keep relatively well defined positions on a lattice pattern. As a
consequence, the wavenumber spectra for the wave elevation

FIG. 12. (a) Top view of Faraday waves using the diffu-
sive light imaging technique. Peaks and troughs appear
as dark and white blobs. Local wave maxima are detected
(white dots within dark blobs) and their motion is
tracked using PTV techniques. [(b) and (c)] Trajecto-
ries of oscillons tracked for 20 Faraday wave periods
at (b) a = 1g and (c) a = 1.4g with f s = 60 Hz. (d)
Autocorrelation function of the oscillon velocity and (e)
mean-square-displacement (MSD) of the oscillons.
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remains peaked even at high vertical acceleration as shown
in Fig. 7(b). Second, the oscillons move randomly in the x-y
plane. The memory loss associated with their random motion is
quantified by the autocorrelation function of their velocity. Fig-
ure 12(d) shows that this function is decreasing and integrable,
which leads to a finite autocorrelation time (Tosc ≈ 0.15 s).
As a consequence, the mean-square-displacement (MSD) of

FIG. 13. (a) Frequency power spectra of the Faraday wave elevation at differ-
ent vertical accelerations a for f s = 60 Hz. (b) Spectral width 4f of the 30 Hz
subharmonics [shown in (a)] and oscillon velocity fluctuations 〈Uosc〉rms ver-
sus a. Inset: Close-up on the spectral broadening of the subharmonic at 30 Hz.
The lines correspond to exponential fits exp(−f /wf ). (c) Ratio of the rms value
of the fluid particle velocity fluctuations 〈Ufluid〉rms over the oscillon velocity
fluctuations 〈Uosc〉rms versus a. Inset: Wave number spectrum of the horizontal
kinetic energy of the fluid particle at a = 1.6g.

the oscillon from their initial positions becomes diffusive at
times longer than Tosc [Fig. 12(e)].

Faraday waves are often described in terms of the fre-
quency power spectrum of the wave elevation measured at
a given point in space by using capacitive measurements or
laser reflection techniques. Since Faraday waves are para-
metrically excited, the main component of their frequency
spectra is subharmonic for moderate vertical acceleration.67

Figure 13(a) shows a close-up on the subharmonic compo-
nent of such spectra measured for five different accelerations
a at f s = 60 Hz. The sub-harmonic broadens with the increase
in a and exhibits pronounced exponential tails exp(−f /wf )
[inset of Fig. 13(b)]. The origin of this exponential decay
was discussed in Ref. 35. It is related to the spatial shape
of the oscillon which is described by h(x) ≈ sech(ax). The
spectral broadening can be characterized by the parameter 4f .
Figure 13(b) shows that the behaviour of 4f as a function of
a is correlated with that of the oscillon horizontal velocity
fluctuations 〈Uosc〉rms. Both quantities scale linearly with the
acceleration a.

This result suggests an interesting interpretation of the
frequency power spectrum of the Faraday waves. The fre-
quency spectrum is measured locally in space. Therefore the
slow random walk of oscillons (Tosc ≈ 0.15 s) about this
observation point in the horizontal plane should lead to the
broadening of the frequency spectrum by a random Doppler
shift. Since the wavenumber spectra of Faraday waves stay
peaked at kw = 2π/λ [see Fig. 7(b)], such thermal broadening
should be given by 4fth = 〈Uosc〉rms/λ. In Ref. 66, the rele-
vance of this interpretation was proven, and it was shown that
indeed wf ≈ 4fth.

In the same study, the motion of fluid particles on the
water surface was compared with the motion of oscillons. Fig-
ure 13(c) shows that the rms fluid particle velocity 〈Ufluid〉rms is
correlated to the oscillon velocity fluctuations 〈Uosc〉rms over a
broad range of accelerations. 〈Ufluid〉rms is directly connected to
the amount of energy stored in the cascade inertial range [Inset
Fig. 13(c)]. These results suggest that 2D turbulence is the driv-
ing force behind both the randomization of the oscillon motion
and the resulting broadening of the wave frequency spectra. In
Ref. 68, it was shown that the suppression of 2D turbulence
by the addition of proteins indeed coincides with disorder-
order transition in the wave lattice. The coupling between
wave motion and 2D hydrodynamic turbulence demonstrated
here offers new perspectives for predicting complex fluid
transport from the knowledge of wave field spectra and vice
versa.

IX. CONCLUSIONS

This paper reviewed recent advances on the emergence
of 2D turbulence in 3D flows. Two systems were discussed:
flows driven electromagnetically in thick fluid layers and the
recently discovered Faraday wave driven flows. In the first sys-
tem, a main result concerns the interaction of 2D turbulence
with a large-scale flow. It was shown how a large-scale vortex
and small-scale turbulence conspire to provide for an upscale
energy cascade in thick layers. More precisely, these exper-
iments reveal that a large-scale vortex can secure its energy
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supply by suppressing vertical motions. In the case of Faraday
wave driven flows, though energy is injected into the vertical
motion of a liquid, it is converted into turbulent horizontal fluid
motion via the generation and interaction of surface vortices. In
this system, spectral condensation has recently been observed,
and a coupling between wave disorder and 2D hydrodynamic
turbulence was discovered.

We started this review by asking if it is possible to create
2D turbulence in experiments. Recent advances on the topic
have been surprising. However, at the end of the 1980 review
on 2D turbulence,69 Kraichnan and Montgomery remarked “In
some cases, the idealised theory may be more valid in provid-
ing a language for discussion rather than a true explanation.”
The systems discussed in this review broaden the use of this
language to unexpected domains.
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