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Wave-based liquid-interface metamaterials
N. Francois1, H. Xia1, H. Punzmann1, P.W. Fontana2 & M. Shats1

The control of matter motion at liquid–gas interfaces opens an opportunity to create

two-dimensional materials with remotely tunable properties. In analogy with optical lattices

used in ultra-cold atom physics, such materials can be created by a wave field capable of

dynamically guiding matter into periodic spatial structures. Here we show experimentally that

such structures can be realized at the macroscopic scale on a liquid surface by using rotating

waves. The wave angular momentum is transferred to floating micro-particles, guiding them

along closed trajectories. These orbits form stable spatially periodic patterns, the unit cells of

a two-dimensional wave-based material. Such dynamic patterns, a mirror image of the

concept of metamaterials, are scalable and biocompatible. They can be used in assembly

applications, conversion of wave energy into mean two-dimensional flows and for organising

motion of active swimmers.
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C
ontrolled manipulation of particles on a surface is
important in a variety of material science and bio-
engineering applications. Accordingly self-assembly, or

the autonomous organization of components into patterns or
structures, has become a fast growing interdisciplinary research
area1–3. The controlled arrangement of particles on a liquid
surface would offer a flexible and tunable method of engineering
surface properties, such as, for example, electrical or thermal
conductivity.

Recently new approaches to the manipulation of particles at a
fluid surface have been proposed. They rely on the generation of
surface waves to control the motion of particles at the liquid–gas
interface. For instance, parametrically excited waves are generated
when a liquid surface is vertically vibrated beyond a certain
acceleration threshold. Such waves, often referred to as Faraday
waves4, are modulationally unstable5 and are readily broken into
ensembles of localised oscillating solitons, or oscillons6,7. In
viscous liquids, oscillons can create spatially periodic patterns and
it has been proposed that such patterns can be viewed as
metamaterials8. The idea of employing Faraday wave patterns as
templates for micro-scale assembly applications has recently been
discussed9. Current understanding of what is achievable with
those waves often relies on properties of particles such as their
wettability and their density10,11.

At lower fluid viscosity, steep oscillons form disordered wave
fields which are coupled to a random motion of fluid particles at
the surface12,13. This motion represents a macroscopic Brownian
walk, where the diffusion of particles at the surface can be
modified by changing the wave height and the wave length14. It
has been shown that the properties of this interface are consistent
with diffusion at thermal equilibrium, and as such, it can be
viewed as a tunable thermal metafluid15.

Another approach relies on propagating waves originating
from a localized source to control the motion of fluid particles on
the surface. In this case particles can be guided away from the
wave source, as well as towards the source in the so-called ‘tractor
beam regime’16. In this case, as for Faraday waves, the waves are
essentially nonlinear.

Here we show that there is another way of organising particles
on a liquid–gas interface which is analogous to a method used in
low-temperature physics to trap atoms in spatially periodic
optical lattices17. We propose a method of remotely shaping the
particle trajectories. It uses linear three-dimensional (3D) surface
waves and relies solely on hydrodynamic forces. The main idea
can be described as a combination of the concept of rotating
waves, created by a superposition of two small-amplitude
standing waves, and the Lagrangian drift of particles along
closed paths in such waves. Though rotating waves
(electromagnetic or acoustic) are usually generated in
cylindrical resonators18,19, we show below that periodic patterns
of rotating waves can be created in a square geometry, similarly to
optical lattices. On a fluid surface, such waves rotate within sub-
wavelength cells and possess local angular momentum which is
transferred to the matter. This mechanism produces particle
trajectories in the form of a spatially periodic lattice of nested
orbitals. This method offers a high degree of control over the
particle motion and the ability to confine particles to spatially
periodic cells. We present experimental results on the creation
and control of such dynamical liquid metamaterials, develop a
theoretical model of particle trajectories and characterize the
transport properties of a multi-unit cell lattice.

Results
Experimental set-up. Stationary surface waves are studied in a
square container (400� 400 mm) filled with water to a depth of
d¼ 81 mm. The waves are generated by two orthogonal

horizontally oscillating paddles whose motion is driven by two
electrodynamic shakers. The motion of the paddles (amplitude,
acceleration) is accurately controlled via an accelerometer-based
feedback loop (see ‘Methods’ section). In these experiments, we
study linear waves of small amplitude (HE1 mm ool, where H
is the wave crest/trough amplitude and l is the wavelength).
These waves obey the gravity-capillary wave dispersion relation:
o2¼ tanh(Kd)(gKþ aK3/r), where o is the angular frequency of
the waves, K¼ 2p/l is the wave number, g is the gravitational
acceleration, a is the surface tension and r is the density of the
liquid. Figure 1 shows schematically the experimental set-up (a,b)
and a photo of the laboratory set-up (c,d).

In these experiments the frequencies of the paddle oscillations
are chosen to fit an integer number of wavelengths into the square
paddle-wall cavity (312� 312 mm2). The relative temporal phase
of the paddle oscillations can be tuned in the range of ±180�
with an accuracy of ±0.1�. This set-up allows the superposition
of two planar standing surface waves to create a periodic wave
field for which the relative temporal phase is controlled.

Wave-driven fluid motion. We study the motion of floating
micro-particles on the water surface perturbed by surface waves.
Two orthogonal plane standing waves create a 3D wave field as
the one shown in Fig. 2a. First, we investigate trajectories of
surface fluid particles tracked for one wave period T¼ 2p/o at the
nodal points. Nodal points are places on the surface where the
local amplitude of the standing wave is zero at every instant in
time. If the wave frequencies are equal, o1¼o2, the shape of the
projection of the particle trajectory on the horizontal plane varies
depending on the phase shift f between the waves, as shown in
Fig. 2b–d. A straight line corresponds to f¼ 0, a circle to f¼p/2
and an ellipse to f¼p/4. When o1¼ 2o2, the trajectory is
represented by a figure of eight (Fig. 2e). The projections of these
trajectories on the horizontal plane are reminiscent of the
Lissajous figures in a two-dimensional (2D) harmonic potential.
In the case of an ideal irrotational fluid, the velocity field uP¼ (
uP

x , uP
y ; uP

z ) associated with such trajectories can be represented by
the gradient of a velocity potential F(x, y, z, t): uP¼rF. The
velocity potential in this wave field is given by:

F x; y; z; tð Þ ¼A cosh K zþ dð Þ½ � cos o1tð Þcos Kxð Þ½
þ cos o2tþfð Þcos Kyð Þ�;

ð1Þ

where K is the wave number, d is the fluid depth and A is
the potential amplitude related to the wave amplitude H.
The z-direction is upwards with z¼ 0 being the level of the
undisturbed liquid surface.

The changes in trajectories observed in Fig. 2b–d highlight that
both the wave dynamics and the trajectories of the fluid particles
at the surface depend on the phase f. This can be seen in the
temporal evolution of the normal nf to the surface at a nodal
point. Figure 2f,g shows the evolution of the horizontal projection
of nf for f¼ 0 and f¼p/2 over one wave period. At zero phase
shift, the temporal trace is a straight line, while it is a circle for the
p/2 phase shift. This means that two orthogonal waves, phase
shifted by f¼p/2, possess local angular momentum. This
angular momentum originates from the rotating character of
standing waves, which is null at f¼ 0 and increases with f. This
effect is somewhat surprising since equation (1) for standing
waves produced in a square geometry shows decoupled temporal
and spatial evolution. Indeed, this decoupling is manifest when
f¼ 0. However, when f¼ p/2, a progressive rotating phase exists
locally in the system. This can be described through a Taylor
series expansion of F near a nodal point (xn, yn, 0), which reads:

F x; y; 0; tð Þ � �AK cos otð Þ sin Kxnð Þdx� sin otð Þsin Kynð Þdy½ �
¼ �AK dr cos y�otð Þ;
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where dx¼ dr cos y, dy¼ dr sin y are expressed in polar
coordinates (r, y) centred at the nodal point and we note that
sin(Kxn)¼±sin(Kyn)¼±1. In this case a rotating phase
(y±ot) appears. This rotation is clearly seen in the experimental
visualizations of the wave (Supplementary Fig. 1, Supplementary
Movie 1).

Now we focus on the wave motion and particle trajectories
when f¼ p/2. Figure 3a shows a snapshot of the wave
topography measured at half the wavelength and marks the
location of some remarkable points (peak, trough, nodal point,
saddle points). First, the motion of the wave peak traces a square
path, as illustrated by experimental data in Fig. 3b. The size of
such a unit cell is Lc¼ l/2. The motion of the wave extrema is
discontinuous along the edges of this cell. In contrast, the z¼ 0
wave isoline rotates continuously at the frequency o around the
nodal point within the unit cell, as shown in Fig. 3b and in
Supplementary Figs 1 and 3. The conservation of mass underpins
the small-scale orbital motion of fluid particles at the time scale of
the wave period T (Fig. 2c). Here we show that a rotating wave
can also transfer momentum to fluid particles. A slow drift of the
orbits is observed in the direction of the wave rotation. This drift
occurs along closed loops with a larger characteristic size (BLc)
and a large time scale (about 50T) as seen in Fig. 3c. The direction
of the orbital drift is opposite in adjacent unit cells and it follows
the rotation of the wave (Fig. 3d).

3D visualisation of travelling waves and the particle drift. From
a geometrical viewpoint, the existence of a small-scale gyroscopic
motion coexisting with a slow drift motion is reminiscent of the
Stokes drift observed in a planar progressive wave20 (see the
Theoretical Model section). This drift is revealed when a water
wave is described from the Lagrangian perspective, or from the
point of view of the fluid particle paths.

Experimentally, the Lagrangian nature of the particle drift can
be illustrated by visualizing 3D trajectories of particles. Here
we use a recently-developed method of 3D particle tracking on
the surface perturbed by waves16,21 with high spatial resolution
(E10� 3l, where l is the wavelength) and high temporal
resolution (E 0.05T). An example of a reconstructed trajectory
is shown in Fig. 4a (red) along with its projection on the
horizontal plane (green). Figure 4b and the Supplementary Movie
2 show instantaneous surface elevations at times ti superimposed
on the trajectory with the position of the particle indicated by a
small sphere. During half the wave period (high wave amplitude),
the particle progresses in the direction of the wave rotation, while
it moves backward during the second half. The particle’s speed
when the wave crest hits it, is higher than during the wave trough
moment. This results in a small displacement of the particle in the
direction of the wave propagation when a wave cycle is
completed. Note that the physics of the Lagrangian circular
drift revealed here is intrinsically different from a recent Eulerian
theory of vorticity generation on a surface perturbed by waves,
which considers bulk viscosity as the essential ingredient of the
mechanism22.

It should also be mentioned that we are able to generate such
drift trajectories at the surface of various liquids with different
viscosities (like glycerol–water solutions with viscosities in the
range of (1–10) mPa?s).

Self-organised periodic lattice of rotating waves. We now
analyse the emergent properties of the fluid motion in a
multi-unit cell lattice of such wave-driven metamaterial.
Figure 5a–c shows particle streaks in flows produced at different
phase shifts f between two orthogonal standing waves. At f¼ 0
the flow is stationary but disordered. The flow becomes more
ordered as f increases.
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Figure 1 | Experimental set-up. (a,b) Schematics of the experimental set-up for the controlled superposition of two orthogonal standing waves in a fluid

tank. Waves are created using two computer controlled electrodynamic shakers. The amplitudes, frequencies and relative phase of the two waves are

adjusted with high accuracy. Both the wave field and the surface flow can be measured (see ‘Methods’ section for details). (c) A photo of the laboratory

set-up showing the time-averaged streaks of drifting imaging particles. (d) Zoom into spatially resolved, small-scale particle drifting orbits.
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First, we compute the compressibility of the flow in the
horizontal (x� y) plane as:

C ¼
@ux=@xþ @uy=@y
� �2D E

x;y

@ux=@yð Þ2þ @uy=@x
� �2þ @ux=@xð Þ2þ @uy=@y

� �2D E
x;y

* +
Tav

ð2Þ
Here ux,y denote fluid velocity components in the horizontal

plane and � � �h iTav
denotes averaging over time Tav. Since the

parameter C is computed only on the horizontal components of
the velocity, it characterizes the dimensionality of the flow.
Quantitatively, C can take on a value between 0 and 2. The lower
the value, the more 2D is the flow. The value CE0.5 marks the
onset of 3D effects23,24. Figure 5d shows that C is a decreasing
function of Tav. For time scales comparable to the drift
characteristic time (B50T), the compressibility C is actually
much smaller than 0.5 independently of f (Fig. 5d, inset). While
the drift mechanism is a 3D phenomenon, the slow flow
produced as a result of this drift is essentially 2D.

To characterize the fluid transport properties of the lattice we
use the structure function r rð Þ ¼ u r0ð Þu r0þ rð Þh ir0=E, where E is
the total horizontal kinetic energy of the surface flow. The angular

brackets denote averaging over different positions r0 in the flow of
the products of horizontal speeds u separated by a distance r.
Figure 5e shows the Fourier transform of the structure function
r(k) (where k¼ 2p/r) for different relative phases f. At f¼ 0, the
spectrum r(k) spreads over low wave numbers (ko100 m� 1)
corresponding to the large-scale disordered streams seen in
Fig. 5a. As the phase f is increased, the broad distribution
at low wave number is replaced with a strong peak at
kw ¼ 2p=LC � 160 m� 1. This peak characterizes the order
emerging in the wave-guided transport at the spatial scale
corresponding to the unit cell. While the phase f is akin
to a control parameter of the rotating wave momentum, the
magnitude of the peak r(kw) can be viewed as a structure factor of
the liquid-interface metamaterial. Figure 5f shows that r(kw)
grows exponentially in the range f¼ [0�, 40�] by a factor of
about 20 and then saturates.

The emergence of order on the liquid surface with the increase
in the phase f is not the only strong effect. The total kinetic
energy E of the horizontal fluid motion increases with f, Fig. 5g,
and for fZ60� it is more than twice as large as that at f¼ 0�.
Importantly, in the experimental data shown in Fig. 5, the wave
amplitude produced by the oscillating paddles (that is, the energy
injected in the system) is kept constant for all f. Thus the
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Figure 2 | Surface elevation and surface particle orbits near the nodal points. (a) Measured surface elevation produced by two orthogonal standing

waves. Red dots indicate positions of nodal points. (b–d) Orbits of the surface particles near the nodal points (red squares) for different phase shifts f
between the standing waves: (b) f¼0, (c) f¼ p/2 and (d) f¼p/4. The orbital motion is measured over one wave period T¼ 2p/oE0.26 s. (e) A

particle orbit near a nodal point for o1¼ 2o2. (f,g) Temporal trace (over T) of the horizontal projections (nx, ny) of the water surface normals (nf in the

schematics) at a nodal point for f f¼0 and g f¼ p/2. Experimental measurements are compared with the theoretical model (see ‘Methods’ section) for

o1¼o2, f¼o/2p¼ 3.9 Hz (l¼ 104 mm) and H¼ 1 mm.
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emergence of rotating waves at the unit cell scale increases the
conversion rate of the wave vertical oscillatory energy into
spatially ordered horizontal kinetic energy.

Theoretical model of the 3D rotating drift. As mentioned above,
it is tempting to draw an analogy between the 3D rotating drift
and the 2D Stokes drift for planar progressive waves20. In the
classical picture uncovered by Stokes, the Eulerian velocity at a
point averages to zero over one wave period, Fig. 6a, but
the Lagrangian velocity of a fluid particle gyrating in the

neighbourhood of that point does not, such that the fluid
particle drifts in the direction of the wave propagation (Fig. 6b).

To test the relevance of such an analogy, we use the in-
compressible Euler equations to model the flow u¼ (ux, uy, uz)
and the liquid surface Z¼ Z(x, y, t) of an ideal fluid perturbed by
orthogonal standing waves. Such equations read:

@u
@t
þu � ru ¼ � 1

r
rp ð3Þ

r � u ¼ 0 ð4Þ
with the following boundary conditions:

uzjz¼� d¼ 0 ð5Þ

@u
@t
þ u � ru

� �
z¼Z
¼ � grZ ð6Þ

@Z
@t
þ u � rZ ¼ uzjz¼Z ð7Þ

where z is measured upwards from the unperturbed liquid surface
and r is the fluid density. The modified pressure p includes
the gravitational pressure rgz (constant atmospheric pressure is
assumed at z¼ Z). Equation (5) imposes zero flow through the
rigid bottom of the container. Equation (6) expresses horizontal
momentum balance at the surface (‘dynamical free surface
boundary condition’). Equation (7) relates changes in the surface
displacement to the vertical component of the flow (‘kinematic
free surface boundary condition’).
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Figure 3 | Surface topography and fluid particle trajectories at the surface for /¼p/2. (a) Contour plot of the surface elevation Z measured at the half-

wavelength scale and t¼ t0. The positions of a nodal point (red square), peaks/troughs (red circles) and saddle points (blue circles) are highlighted. (b) Dynamics

of the rotating wave about a nodal point within a unit cell of size Lc¼ l/2. Orange circles: motion of wave peaks experimentally tracked for 50T. Black lines:

the rotation of the z¼0 isoline of the surface elevation followed for T/2. (The red line indicates t¼ t0, the blue one t¼ t0þ T/4.) (c,d) Surface particle drifts tracked

for E50T: (c) within a single unit cell, particle orbits drift forming closed nested guiding centre trajectories (experiments, f¼o/2p¼ 3.9 Hz (l¼ 104 mm),

H¼ 2.5 mm). (d) The direction of the drift alternates in adjacent unit cells (experiments, PTV measurements, f¼ 3.9 Hz, H¼ 1 mm).
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Figure 4 | Rotating drift mechanism. (a) Experimentally measured 3D

trajectory (red) of a surface particle drifting within a unit cell and its projection

on the horizontal plane (green) (experiments, f¼o/2p¼ 3.9 Hz, l¼ 104 mm,

H¼ 2.5 mm). (b) Positions of an imaging particle (yellow dot) on the 3D

trajectory at three consecutive moments in time within half a wave period. See

Supplementary Movie 2 for details. Blue surfaces show the rotation of the

liquid surface measured simultaneously with the particle position.
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Under these conditions, the velocity field uP¼rF
(equation (1)) is a solution. Assuming the phase difference
f¼p/2, we obtain:

uP ¼ LKg
o

cosh K zþ dð Þ½ �
cosh Kd

� cosot sin Kx x̂þ sinot sin Ky ŷþf

tanh K zþ dð Þ½ � cosot cos Kx� sinot cos Kyð Þẑg
ð8Þ

where L	Ao cosh(Kd)/g has the dimension of a length.
Lagrangian particle trajectories can be computed by numerical
integration of equation (8) with z¼ Z. The resulting trochoid-like

trajectories circulate in nested orbits about the unit cell in the
direction of the rotating wave (Fig. 6c,d) in agreement with the
experimental observations. A given trajectory exhibits small-
radius gyrations at frequency o superimposed with a circular drift
about the unit cell at a much lower frequency. Analytically, the
drift velocity Ud can be computed as:

Ud ¼
Zt

0

uPdt0

0
@

1
A � ruP; ð9Þ
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where � � �ð Þ ¼ 1
T

R T
0 � � �ð Þdt is a gyro-average over one gyration

period T¼ 2p/o (note that Ud is a time-averaged Lagrangian
property and uP is an Eulerian velocity). The drift speed Ud

approximately matches the experimentally measured one.
Counter-intuitively, a quasi-linear irrotational model can produce
vortex-like structure at a fluid interface25,26. For more
quantitative agreement, we include an additional steady
rotary motion at the surface to take into account the finite
steepness of the waves (see ‘Methods’ section). The existence of
such steady rotation has also been demonstrated in numerical
simulations of non-linear waves at the surface of an ideal
fluid27,28.

Discussion
Our results show that a horizontal flow on a liquid surface can be
ordered into a perfect lattice of counter-rotating vortex-like
structures by adjusting the temporal phase between two
orthogonal surface waves to p/2. Such vortices confine floating
particles within the unit cells. Manipulation of matter using waves
is well known in a range of physical contexts29–33. It is
particularly interesting to compare trapping of fluid particles
within unit cells of the surface-wave metamaterial with the case of
optical lattices in which atoms are trapped in the potential
landscape created by two standing optical waves29,30. In optical
lattices, the formation of radiation pressure vortices has been
reported17,31. Radiation pressure is related to the momentum of
electromagnetic waves, and the vortices are generated when two
orthogonal standing waves have their temporal phases shifted by
p/2, similar to the case of the surface waves. The wave energy
flows along closed paths that resemble fluid vortices and the
radiation force acting on the atoms is non-conservative31,32.

Although such an analogy between optical lattices and the
surface-wave-based metamaterial is remarkable, the two systems
are quite different.

Surface waves are strongly dispersive and they obey mass
conservation in the fluid. In addition, waves in vacuum and waves
in a medium have other fundamental differences. There is usually
no clear connection between a mechanical wave and the
momentum it may generate in a fluid34–36. Examples include
an acoustic linear wave which can propagate in a fluid without
any momentum present, or a small gravity wave packet which can
generate pressure disturbances (that is, momentum) in a fluid far
away from the packet spatial location34.

In this context, the Stokes drift has a special role: it can be
viewed as a wave momentum34. Indeed, the phenomenon
intimately links the transport of surface fluid particles to a
propagating planar surface wave. Here we uncover a wave
configuration where the Stokes drift exists along a closed path:
a rotating Stokes drift. This path is created by a locally rotating
wave. In this sense, the results presented here point to the
existence of a radiation–pressure-like force guiding particles at
the liquid surface.

It would also be interesting to find an analogue of a particle
polarizability by light waves in the context of water waves. In
optics, the particle polarizability plays a major role in both the
generation of optical vortices and in trapping of atoms. Similarly
to the case of optical traps, it was shown that in the standing
surface waves, particles’ inertia and wettability conspire to trap
particles either at the wave extrema or at the nodes10. This
suggests that the analogue of the polarizability in the surface
waves could be related to the wettability and inertia of particles.
In our experiments, the rotating Stokes drift clearly dominates the
trapping effects.
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the experimental data shown in Fig. 3c,d. Surface particle drifts are tracked for E50T, the parameters are f¼o/2p¼ 3.9 Hz (l¼ 104 mm), H¼ 2.5 mm in

(c) and f¼ 3.9 Hz, H¼ 1 mm in (d). These Lagrangian particle trajectories computed by numerical integration of the Eulerian equation (8) exhibit small-

radius gyrations at frequency o superimposed with a circulatory drift about the unit cell at a much lower frequency. The black dots signal the initial

positions of the particles. The direction of the simulated drift alternates in adjacent unit cells.
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Beyond these analogies, the scope of the recently introduced
concept of a wave-driven metafluid15 can be broadened to that of
a wave-based liquid-interface metamaterial. As we show, by
dynamically shaping a fluid interface using rotating waves, one
can produce an effective 2D material endowed with prescribed
transport properties. An important feature of such a system is the
establishment of unit cells confining nested spatio-temporal
structures. These structures would allow remote control of
particles on multiple length scales.

Methods
Experimental set-up. Figure 1 shows schematically the experimental set-up (a,b)
and a photo of the laboratory set-up (c). Computer controlled electrodynamic
shakers (TIRA TV51140) are used to drive synchronized motion of the two wave
paddles. The paddle accelerations are measured using two accelerometers (B&K
4507, 1,000 mV g� 1) that provide feedback to the system’s motion controller
(Vibration Research, VR9500). The phase delay f between the paddles is adjustable
in the range of ±180� via an arbitrary waveform generator (HP 33120 A).

Particular attention was paid to boundary conditions at both the oscillating
paddles and the fixed wall facing them. It was noticed that the presence of a
meniscus strongly influences our ability to produce a well-controlled standing wave
field. Indeed we observe that a meniscus affects the spatial control on the phase f
in the cavity, and it was recently shown to affect the reflection coefficient of gravity-
capillary waves on the wall37. Therefore we machine specific grooves in the
container walls and paddles such that the contact line is pinned to the wall edge
with no meniscus. The wave fields produced in this cavity match well the
numerically modelled waves (see Supplementary Figs 1 and 3).

Flow measurements. The horizontal fluid flow is visualised using buoyant
tracer particles (Polyamid, 50 mm) illuminated by light-emitting diode strip lights
surrounding the transparent acrylic fluid tank. A high-resolution video camera
(Andor Zyla X5.5; 2,560� 2,160 pixel; 100 fps) is used to film the motion of
imaging particles. With 16-bit resolution, the camera provides sufficient pixel
intensity and spatial resolution (B50–200 mm per pixel; Nikon f1.4/50 mm lens)
for quantitative data analysis using well-developed particle imaging velocimetry
and particle tracking velocimetry (PTV) algorithms.

The particle imaging velocimetry technique is used to obtain velocity fields of the
horizontal fluid motion. During an experimental run, the particle motion
(corresponding to different f) is recorded twice: once at a frame rate equal to the wave
frequency f¼o/2p and then at (10� f) fps. This allows us to characterize accurately
both the fast gyration motion and the slow rotating drift. For the data presented in
Fig. 5, the field of view used for the analysis is 234� 234 mm2 corresponding to a 6� 6
unit cell lattice (for waves generated at f¼o/2p¼ 4.58 Hz, l/2¼ p/K¼ 39 mm). The
spatial resolution is 125mm per pixel. The velocity fields are computed on a 40� 40
spatial grid (grid mesh size is E5.35 mm), with a 10.7� 10.7 mm2 interrogation
window size (the interrogation windows are overlapping). The measurement resolution
of the instantaneous displacement is subpixel. The wave number spectra in Fig. 5e are
averaged over the field of view and 200 snapshots of the velocity field.

We use diffusive light imaging to measure the wave motion. The fluid surface is
illuminated using a light-emitting diode panel placed underneath the transparent
bottom of the container. A few per cent of milk added to water provides sufficient
contrast to obtain a high-resolution reconstruction of the wave field. The
absorption coefficient is measured before each experiment, which allows calibrating
the surface elevation with a vertical resolution of 80 mm. For 3D PTV
measurements, floating black carbon glass particles are used to visualise
simultaneously the fluid and the wave motions. A few drops of non-ionic surfactant
are added to ensure that these particles are homogeneously distributed at the fluid
surface before starting an experimental run. For a given set of parameters (paddles
acceleration, frequency), no difference could be measured between particle
horizontal motion in these experiments and the trajectories of Polyamid particles at
the surface of water with no milk and no surfactant.

3D Lagrangian trajectories (see Fig. 4, Supplementary Movie 2 and
Supplementary Fig. 2) are retraced using a combination of a 2D PTV technique
and a subsequent estimation of the local elevation along the trajectory21. First, the
horizontal motion (x� y coordinates) of a particle is tracked using threshold filters
and a nearest-neighbor algorithm38. The wave field evolution is then obtained by
removing particles from the movies with local filter techniques. Then the particle
elevation (z coordinate) is measured as the wave elevation over a local window
(300 mm radius), which is centred on the x� y particle coordinates at a given time.
Finally the 3D trajectories of the particle and the wave field are visualized using the
Houdini 3D animation tools (Side Effects Software).

Theoretical effect of the finite wave steepness. Analytically, the drift Ud

(equation 9) associated with the Eulerian velocity (equation 8) is

Ud ¼
Rt
0

uPdt0
� �

� ruP

¼ L2g2K3

2o3
sinh2 K zþ dð Þ½ �

cosh2 Kdð Þ � sin Kx cos Ky x̂þ cos Kx sin Ky ŷð Þ;
ð10Þ

where � � �ð Þ ¼ 1
T

R T
0 � � �ð Þdt is a gyro-average over one gyration period T¼ 2p/o.

This expression agrees quantitatively with the gyro-averaged velocity observed by
numerical integration of the Eulerian equation (8). The parameters L, K, o and d
are taken from the experiment.

The small parameter KZ is a measure of the steepness of the wave and is much
less than 1 for surface vertical displacements of several millimetres across a 4 cm-
wide unit cell as considered here. In our modelling, we have also considered the
wave/flow coupling to first order in O KZð Þ. The modelled surface displacement Z
comes from equation (6) with u¼uP. To find Z, we substitute equation (8) into
equation (6), invert the gradient and retain terms of order O KZð Þ. The result is:

Z ¼ Z1 þ Z2 þ Z3 þ Z4 þ tanh2 Kdð ÞZ5

1� tanh Kdð ÞK Z1 þ Z2 þ 2Z5ð Þ ; ð11Þ

where

Z1 ¼ L sinot cos Kx; Z2 ¼ � L cosot cos Ky

Z3 ¼
L2gK2

4o2cosh2 Kdð Þ cos2ot cos 2Kx; Z4 ¼
L2gK2

4o2cosh2 Kdð Þ sin2ot cos 2Ky

Z5 ¼ �
L2gK2

2o2
sin 2ot cos Kx cos Ky:

Defining H as the maximum surface displacement, we find that HE
ffiffiffi
2
p

L when
KLoo1. For a time sequence of Z for parameters relevant to the experiment
(L¼ 1.3 mm, K¼ 58.1 rad m� 1, o¼ 23.9 rad s� 1, d¼ 8 cm) and comparison with
experimental data, see the Supplementary Figs 1 and 3 and Supplementary Movies
1 and 3. There is a strong match between the experimentally measured wave field
dynamics and the predictions of the model.

To take into account higher-order effects of the finite steepness of the waves on
the flow, we add to the model a rotational flow uR in addition to the intrinsic
Lagrangian drift. Specifically:

uR ¼ b
	
� sin Kx cos Ky x̂þ cos Kx sin Ky ŷ:
þ b2K

g sin 2Kx sin 2Ky cos 2Kx� cos 2Kyð Þẑ

 ð12Þ

where b is a rotational velocity amplitude. The horizontal components of uR are
chosen to match the form of the drift velocity Ud. The introduction of such a term
is supported on physical grounds. Indeed we have noted that the model (11) at
order O KZð Þ predicts a time-averaged surface gradient outward from the centre of
each unit cell, that is, a stationary well, providing a centripetal acceleration within
the unit cell. A time-averaged remanent level profile has been discussed in the
context of the effect of radiation pressure on 2D standing waves35. On a related
vein, we note that a horizontal drift of a similar form was mentioned in a nonlinear
analysis of non-viscous standing surface waves27. When the rotation amplitude b is
chosen to match the experimental data, uR is of the order of magnitude of the drift
Ud (see Supplementary Fig. 3 and Supplementary Movie 4).

The particle trajectories shown in Fig. 6c,d were produced by integrating the
velocity u¼ uPþuR using a 3D, fourth-order Runge–Kutta algorithm. The model
parameters used were L¼ 1.3 mm and b¼ 0.8456 cm s� 1 for c and L¼ 0.433 mm
and b¼ 0.4882 cm s� 1 for d. The trajectories were integrated for 2,500 points in
time over 37 gyration cycles (c) and 25 gyration cycles (d).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.

References
1. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295,

2418–2421 (2002).
2. Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of

magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature
405, 1033–1036 (2000).

3. Aubry, N. & Singh, P. Physics underlying controlled self-assembly of
micro- and nanoparticles at a two-fluid interface using an electric field. Phys.
Rev. E 77, 056302 (2008).

4. Faraday, M. On the forms and states assumed by fluids in contact with
vibrating elastic surfaces. Phil. Trans. R. Soc. London 121, 299 (1831).

5. Xia, H., Shats, M. & Punzmann, H. Modulation instability and capillary wave
turbulence. EPL 91, 14002 (2010).

6. Umbanhowar, P. B., Melo, F. & Swinney, H. L. Localized excitations in a
vertically vibrated granular layer. Nature 382, 793–796 (1996).

7. Shats, M., Xia, H. & Punzmann, H. Parametrically excited water surface ripples
as ensembles of oscillons. Phys. Rev. Lett. 108, 034502 (2012).

8. Domino, L., Tarpin, M., Patinet, S. & Eddi, A. Faraday wave lattice as an elastic
metamaterial. Phys. Rev. E 93, 050202 (2016).

9. Chen, P. et al. Microscale assembly directed by liquid-based template. Adv.
Mater. 26, 5936–5941 (2014).

10. Falkovich, G., Weinberg, A., Denissenko, P. & Lukaschuk, S. Floater clustering
in a standing wave. Nature 435, 1045–1046 (2005).

11. Vella, D. & Mahadevan, L. The cheerios effect. Am. J. Phys 73, 817–825 (2005).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14325

8 NATURE COMMUNICATIONS | 8:14325 | DOI: 10.1038/ncomms14325 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


12. Francois, N., Xia, H., Punzmann, H. & Shats, M. Inverse energy cascade and
emergence of large coherent vortices in turbulence driven by Faraday waves.
Phys. Rev. Lett. 110, 194501 (2013).

13. von Kameke, A. et al. Double cascade turbulence and Richardson dispersion in
a horizontal fluid flow induced by Faraday waves. Phys. Rev. Lett. 107, 074502
(2011).

14. Xia, H., Francois, N., Punzmann, H. & Shats, M. Lagrangian scale of particle
diffusion in turbulence. Nat. Commun. 4, 2013 (2013).

15. Welch, K. J., Liebman-Pelaez, A. & Corwin, E. I. Fluids by design using chaotic
surface waves to create a metafluid that is Newtonian, thermal, and entirely
tunable. Proc. Natl Acad. Sci. USA 113, 10807–10812 (2016).

16. Punzmann, H., Francois, N., Xia, H., Falkovich, G. & Shats, M. Generation
and reversal of surface flows by propagating waves. Nat. Phys 10, 658–663
(2014).
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