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Abstract. Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles.
The motion of these oscillons is measured using particle tracking tools and it is compared with the motion
of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the
collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared
displacement at short and long times, respectively. While the floating particles motion has been previously
explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description
exists for the random walk type motion of oscillons. It is found that the r.m.s velocity 〈ũosc〉rms of oscillons
is directly related to the turbulent r.m.s. velocity 〈ũ〉rms of the fluid particles in a broad range of vertical
accelerations. The measured 〈ũosc〉rms accurately explains the broadening of the frequency spectra of the
surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the
driving force behind both the randomization of the oscillons motion and the resulting broadening of the
wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated
here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra
and vice versa.

Introduction

Faraday waves [1] are parametrically excited perturba-
tions that appear on a liquid surface when the latter is
vertically vibrated. Those waves can generate a variety of
two-dimensional patterns [2–5]. Though such patterns can
be described via the nonlinear interactions of waves [6], an
alternative approach has emerged after the discovery of
the localised oscillating excitations, termed oscillons [7].
Oscillons have been discovered in a variety of flows. The
first parametrically driven stationary oscillons were dis-
covered on the water surface in a resonator [8]. Later os-
cillons were found in granular layers [7], in thin layers of
highly dissipative fluids [9], in non-Newtonian fluids [10],
in strongly dissipative liquids vibrated at two frequen-
cies [11] and in a very narrow vertically vibrated cell [12].
The oscillonic nature of Faraday waves on the water sur-
face was also revealed and discussed in the context of the
order-to-disorder transition in strongly nonlinear three-
dimensional Faraday ripples [13]. It was proposed that the
shape of oscillons in physical space determines the shape
of the frequency spectra of the nonlinear Faraday waves.
Later, the horizontal mobility of oscillons was studied to
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understand mechanisms leading to the generation of ex-
treme wave events [14].

In parallel with the better understanding of the quasi-
particle nature of the Faraday surface ripples, a remark-
able progress has been made in studying the motion of
the fluid particles of which these waves are comprised [15–
17]. It was found that at low dissipation and sufficiently
high vertical acceleration, the motion of fluid particles
on the water surface reproduces in detail the motion of
fluid in two-dimensional turbulence [18]. In particular, the
Kolmogorov-Kraichnan spectrum Ek ∝ k−5/3 of flow ki-
netic energy characterizes the fluid motion in the hori-
zontal plane. The existence of the inverse energy cascade
was confirmed by measurements of the Kolmogorov flux
relation from the third-order velocity structure function.
The inverse cascade transfers spectral energy from small
to large scales in 2D turbulence and leads in bounded flow
to the accumulation or condensation of spectral energy at
the boundary size scale. The effect of spectral condensa-
tion was observed in the Faraday wave-driven 2D turbu-
lence [16]. Several works on the Lagrangian statistics of
floating tracers revealed that fluid transport follows the
classical Taylor single-particle dispersion [19,20]. In par-
ticular, it was found that the fluid particle dispersion is
determined by a single measurable Lagrangian scale LL

comparable to the forcing scale Lf . This scale LL de-
termines the diffusion coefficient in 2D turbulence via
D = 〈ũ〉rmsLL, where 〈ũ〉rms is the root-mean-squared ve-
locity in isotropic turbulence.
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In this paper we ask the following question: is it pos-
sible to bridge the gap between the quasi-particle descrip-
tion of the Faraday waves and the statistical character-
istics of the fluid motion on the surface? Recent experi-
mental advances allow us to compare simultaneously the
motion of the wave phase with that of fluid particles from
both Lagrangian and Eulerian viewpoints. Here we study
Lagrangian and Eulerian statistics of the oscillon motion
and compare them with those of the fluid motion to show
that it is possible to predict transport on the surface of
water perturbed by the Faraday waves from the knowledge
of the wave fields and vice versa. In particular, these re-
sults demonstrate that the broadening of the wave spectra
can be predicted if the 2D turbulence energy is known.

Experimental results

To visualise the surface elevation in Faraday waves, we em-
ploy a version of the profilometry technique, the diffusive
light imaging (see, e.g., [17]). The technique allows track-
ing the positions of oscillons in the x-y plane with good
spatial and temporal resolution. Moreover, in this study,
we simultaneously track the horizontal motion of the oscil-
lons and of the fluid particles by seeding the fluid surface
with floating tracers (particle diameter ≈ 200μm). This
allows the motion of these two entities to be compared
from two different description viewpoints:

a) The Lagrangian viewpoint, which is the trajectory-
based representation of a motion. Using particle track-
ing technique to describe Faraday waves has only
been introduced recently [14]. In this respect, the La-
grangian motion of oscillons can be understood as the
horizontal motion of the local wave phase.

b) The Eulerian viewpoint, which characterises the mo-
tion as the temporal evolution of a spatial field.

Faraday waves are formed in a circular container
(178mm diameter, 30mm deep) filled with a liquid whose
depth is larger than the wavelength of the perturbations
at the surface (deep water approximation). The container
is vertically vibrated by an electrodynamic shaker. The
forcing is monochromatic and set to f0 = 60Hz. The am-
plitude a of the vertical acceleration imposed by the shaker
is measured by an accelerometer. An electronic controller
uses the real-time feedback of the accelerometer to control
the shaker acceleration and forcing frequency. The accel-
eration threshold for the parametric excitation of Faraday
waves is ac ≈ 0.6g at f0 = 60Hz.

Figure 1(a) shows a snapshot of the wave field as ob-
served by using the diffusive light imaging techniques. The
temporal evolution of a 8 × 8 cm2 wave field is captured
by a fast camera at 120 frames per second. The inten-
sity of the transmitted light is inversely proportional to
the wave heights: darker blobs correspond to the wave
crests in fig. 1(a). White dots within the dark blobs
mark the local oscillon maximum. The motion of these
maxima is analysed by performing particle tracking ve-
locimetry. Figure 1(b) shows the mean-squared displace-
ment 〈δr2〉osc = 〈|�r(t)osc −�r(0)osc|2〉 of an oscillon moving

along the trajectory �r(t)osc from its initial position �r(0).
The mean-squared horizontal displacement (MSD) shows
ballistic behaviour at short times and has a diffusive be-
haviour at longer times

〈δr2〉osc ≈ 〈ũ2
osc〉t2, at t � TLosc , (1)

〈δr2〉osc ≈ 2〈ũ2
osc〉TLosct, at t � TLosc . (2)

Here uosc is the oscillon velocity, TLosc =
∫ ∞
0

ρ(t)dt is the
Lagrangian integral time, which can be obtained from the
Lagrangian velocity autocorrelation function

ρ(t) = 〈uosc(t0 + t)uosc(t0)〉/〈ũ2
osc〉, (3)

where 〈ũ2
osc〉 is the velocity variance. The oscillon velocity

autocorrelation function is a decaying integrable function
of time, as seen in fig. 1(c). It characterises the mem-
ory loss process of the random motion of oscillons in the
horizontal plane. In fig. 1(c), the estimated Lagrangian
integral time for the oscillons motion is of the order of
0.15 s, consistent with the change in the scaling of 〈δr2〉osc
in fig. 1(b). Figure 1(d) shows the root-mean squared os-
cillon velocity 〈ũosc〉rms as a function of the vertical accel-
eration a. The velocity increases linearly with a.

These results have an interesting consequence on the
interpretation of the frequency spectrum of the Faraday
waves which is commonly measured as an Eulerian quan-
tity, i.e. the wave elevation is measured locally in space.
The random walk of oscillons about the observation point
in the x-y plane should lead to the broadening of the fre-
quency spectra by random Doppler shift. This thermal
broadening should then be given by Δfth = 〈ũosc〉rms/λ,
where λ is the characteristic scale of the oscillon for a
given excitation frequency. It has been previously shown
that this scale is related to the wavelength derived from
the linear dispersion relation of capillary waves [13]. Fig-
ure 1(e) shows the wave number spectra of the surface
elevation in these experiments at two levels of accelera-
tion. The characteristic size of the oscillons here remains
constant and is λ = 2π/kmax ≈ 7.4mm. Figure 1(f) shows
the expected broadening Δfth of the frequency spectra
versus vertical acceleration.

We compare the spectral broadening expected from
the “thermal” motion of oscillons with spectral measure-
ments of the surface elevation at fixed point in space. The
Eulerian frequency spectra measured at five levels of ver-
tical acceleration are shown in fig. 2. As the vertical accel-
eration is increased, the spectra broaden exhibiting pro-
nounced exponential tails: Ew ∝ exp(−Bf). The parame-
ter 1/B characterises the spectral broadening of the first
subharmonic of f0. As seen in the inset of fig. 2(b), 1/B
scales linearly with the vertical acceleration a and it is
close to the expected broadening of the frequency spectra
in fig. 1(f).

It is interesting to compare the motion of the actual
fluid particles on the water surface with the motion of
the oscillons, or the wave phase. We have previously re-
ported that both motions seem qualitatively distinct [16],
however these differences have never been quantified. Fig-
ure 3(a) shows the MSD of fluid particles and oscillons. It
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Fig. 1. (a) An image of the Faraday waves using the diffusive light imaging technique. Peaks and troughs appear as dark and
white blobs. Local wave maxima are detected (white dots within dark blobs) and their motion is tracked using PTV techniques.
(b) The mean-squared horizontal displacement of oscillons 〈δr2〉osc away from their initial position as a function of time. (c) The
Lagrangian velocity autocorrelation function ρ(t) of the oscillons motion. Data shown in (b) and (c) were measured at the vertical
acceleration of a = 1.6g using over 2000 oscillon trajectories. (d) RMS value of the oscillon velocity fluctuations 〈ũosc〉rms in
the x-y plane versus the vertical acceleration a. (e) Wave number power spectra of the surface elevation at different vertical
acceleration (a = 1.2g and a = 1.6g). (f) Predicted Doppler shift Δfth = 〈ũosc〉rms/λ of the oscillon frequency spectra versus
the vertical acceleration a.

shows that both entities share similar Lagrangian proper-
ties, such as a diffusive transport regime at long times [19].
The theory of single fluid particle dispersion driven by tur-
bulent agitation dates back to Taylor [21]. To our knowl-
edge, there is no theory that predicts the diffusive motion
of oscillons at the water surface. The main difference be-
tween both motions stems from the Lagrangian integral
scale which characterizes the diffusive motion and corre-
sponds to the step length of the associated Brownian walk.
The Lagrangian integral scale is computed as the product
of the r.m.s velocity by the Lagrangian integral time. In
the following, the integral scales of the fluid motion and of
the oscillon motion are named LL and LLosc, respectively.
LL is constant and roughly equal to 3.3mm in fully de-
veloped turbulence (a > 1g for f0 = 60Hz) while LLosc

increases with a and is markedly smaller than LL as shown
in fig. 3(b).

For the same broad range of vertical accelerations, we
also compare the r.m.s. fluid particle velocity 〈ũ〉rms with
the r.m.s oscillon velocity 〈ũosc〉rms. Figure 4 shows the ra-
tio 〈ũ〉rms/〈ũosc〉rms as a function of a. At low accelerations

this ratio increases with a, however when 2D turbulence
develops manifested by the Kolmogorov k−5/3 Eulerian
spectrum (see the inset in fig. 4), the ratio remains con-
stant at the level 〈ũ〉rms/〈ũosc〉rms ≈ 3 in the broad range
of accelerations.

Discussion and conclusions

Broadening of spectral harmonics of disordered capillary
waves has been discussed with respect to the Faraday
waves, e.g. [22,23], but never in the context of the hor-
izontal turbulent fluid motion.

The results presented here point to a strong connec-
tion between the random-walk-type motion of fluid par-
ticles on the surface and that of the oscillons, or the lo-
cal wave phases. First, both exhibit ballistic dispersion
at times less than Lagrangian velocity correlation time.
Second, both show fast decaying velocity autocorrelation
functions. Third, the observed r.m.s. horizontal velocities



Page 4 of 5 Eur. Phys. J. E (2015) 38: 106

(a)

(b)

100

101

102

103

104

105

5 10 15 20 25 30 35 40 45

0.7g

1g

1.2g

1.6g

2.4g

E
w
(f) (A.U.)

f (Hz)

102

103

104

105

30 31 32 33 34 35 36 37 38

E
w
(f) (A.U.)

f (Hz)

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0.5 1 1.5 2 2.5

1/B (Hz)

a (g)

e-Bf

Fig. 2. (a) Eulerian frequency power spectra of the Faraday
waves elevation at different vertical acceleration a. (b) Close
up on the broadening of the subharmonic. The dashed lines
correspond to the exponential fit exp(−Bf). Inset: spectral
width 1/B of the subharmonic versus a.

of oscillons are very well correlated with the r.m.s. veloc-
ities of the Faraday-wave-driven turbulence.

Qualitatively, the fact that the ratio of the fluid par-
ticle velocities is approximately three times higher than
that of oscillons (fig. 4) can be understood as follows. The
Eulerian correlation length of the fluid particles velocity
in fully developed turbulence is shorter than the oscillon
size [19]. The motion of an oscillon is a collective fluid mo-
tion of many independent particles. For the data discussed
here the Eulerian correlation length for the particle veloc-
ity is LE = 2.2mm, while the oscillon size, as discussed
above, is λ ≈ 7.4mm, roughly a factor of 3 larger.

The random motion of oscillons leads to the observa-
tion of exponential tails in the broadened frequency spec-
tra of fig. 2(b). The origin of these tails was discussed
in ref. [13]. The surface elevation by a single oscillon is
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Fig. 3. (a) MSD of the fluid particles and of the oscillons
at the same acceleration a = 1.6g. (b) Lagrangian integral
length scale of the horizontal motion of fluid particles LL and
of oscillons LLosc versus the vertical acceleration a.

well described by h(x) ∼ sech(ax). The horizontal motion
of an oscillon in its random walk is slow, TL = 0.15 s in
fig. 1(c) compared with the period of the vertical oscilla-
tions of 0.033 s (30Hz in this experiment). Such random
motion of vertically oscillating quasi-particles leads to a
shape of the frequency spectrum in figs. 2(a-b) given by
E(f) ∼ sech2[B(f−fh)], where fh = 30Hz is the first sub-
harmonic frequency. The spectral broadening measured as
1/B is consistent with the Doppler shift computed from
the measured r.m.s. velocity of the oscillons. The latter is
directly related to the presence of 2D turbulence on the
water surface.

Summarising, we present the analysis of the Faraday
wave motion in disordered wave fields in water and com-
pare it with the measurements of the turbulent motion
of the surface fluid particles. This study suggests that 2D
turbulence is the driving force behind both the randomi-
sation of the oscillon motion and the resulting broadening
of the wave frequency spectra.
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Fig. 4. Ratio of the RMS value of the fluid particle velocity
fluctuations over the oscillon velocity fluctuations at different
acceleration a. Inset: Eulerian wave number spectrum of the
horizontal kinetic energy of the fluid particles at a = 1.6g.

Both, particles and quasi-particles, exhibit Taylor dis-
persion. The mean-squared displacement is ballistic (∝ t2)
at short times and diffusive (∝ t) at times longer than
the corresponding Lagrangian velocity correlation time
TL. Perhaps the most remarkable observation is that in
fully developed turbulence, at the vertical acceleration
a ≥ 1g (see fig. 4), the ratio of the r.m.s. velocities of
the surface fluid particles and of the wave phases remains
constant at the level of 〈ũ〉rms/〈ũosc〉rms ≈ 3. This result
needs to be further investigated theoretically. If proven
universal, this offers a method of determining the diffu-
sion coefficient in the Faraday-wave-driven 2D turbulence
using the information only about the wave phase motion
since D = 〈ũ〉rmsLL. Here LL = 〈ũ〉rmsTL ≈ 0.7Lf is the
Lagrangian correlation length related to the forcing scale
Lf [19,20] and 〈ũ〉rms ≈ 3〈ũ〉osc.
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