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Preface

The problem of turbulence and coherent structures is of key importance in
many fields of science and engineering. It is an area which is vigorously
researched across a diverse range of disciplines such as theoretical physics,
oceanography, atmospheric science, magnetically confined plasma, nonlin-
ear optics, etc. Modern studies in turbulence and coherent structures are
based on a variety of theoretical concepts, numerical simulation techniques
and experimental methods, which cannot be reviewed effectively by a single
expert. The main goal of these lecture notes is to introduce state-of-the-
art turbulence research in a variety of approaches (theoretical, numerical
simulations and experiments) and applications (fluids, plasmas, geophysics,
nonlinear optical media) by several experts.

This book is based on the lectures delivered at the 19th Canberra Inter-
national Physics Summer School held at the Australian National University
in Canberra (Australia) from 16-20 January 2006. The Summer School was
sponsored by the Australian Research Council’s Complex Open Systems
Research Network (COSNet).

The lecturers aimed at (1) giving a smooth introduction to a subject to
readers who are not familiar with the field, while (2) reviewing the most
recent advances in the area. This collection of lectures will provide a useful
review for both postgraduate students and researchers new to the advance-
ments in this field, as well as specialists seeking to expand their knowledge
across different areas of turbulence research.

The material covered in this book includes introductions to the theory
of developed turbulence (G. Falkovich) and statistical and renormalization
methods (D. McComb). The role of turbulence in ocean energy balance
is addressed in a review by H. Dijkstra. A comprehensive introduction to
the complex area of the theory of turbulence in plasma (J. Krommes) is
complemented by a review of experimental methods in plasma turbulence
(M. Shats and H. Xia). An introduction to the main ideas and modern
capabilities of numerical simulation of turbulence is given by J. Jimenez.

v
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vi Preface

Experimental methods in fluid turbulence studies are illustrated in the lec-
tures by J. Soria describing the particle image velocimetry. Finally, the
relatively new field of the physics of vortex flows in optical fields is reviewed
by A. Desyatnikov.

The Summer School in Canberra was accompanied by a workshop on
the same topic. The Workshop Proceedings (editors J. Denier and J. Fred-
eriksen) will also be published by World Scientific under the same title
as these Lecture Notes (“Turbulence and Coherent Structures in Fluids,
Plasmas and Nonlinear Media”). References in this book to the Workshop
papers are given as “I. Jones, Workshop Proceedings”.

Michael Shats
Convenor of the 19th Canberra International Physics Summer School

Canberra, August 2006
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Chapter 5

Experimental Studies of Plasma Turbulence

Michael Shats and Hua Xia

The Australian National University, Canberra ACT 0200, Australia
E-mail: Michael.Shats@anu.edu.au, Hua.Xia@anu.edu.au

This chapter is based on two lectures given by M. Shats at the Summer
School describing studies of turbulence in toroidal plasma confinement
experiments. Some plasma diagnostics relevant for turbulence studies
are reviewed. The data analysis techniques and methods are described in
the context of the turbulence studies performed in the low-temperature
plasma of the H-1 toroidal heliac, with particular emphasis on the analy-
sis of spectral transfer in turbulent spectra. Experimental results on self-
organization of the two-dimensional fluid turbulence are presented to il-
lustrate some similarity with processes in quasi-two-dimensional plasma
turbulence. Experimental signatures of zonal flows in plasma are illus-
trated.
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5.1. Introduction

Our interest in experimental studies of turbulence in magnetized plasma
has been driven by the need to understand anomalously high loss of par-
ticles and energy across confining magnetic field in toroidal magnetic con-
finement experiments. Anomalous transport in plasma placed in magnetic
field has been attributed to microscopic plasma turbulence as early as 1949
by Bohm1 who suggested that oscillating electric fields due to plasma in-
stabilities can substantially increase diffusion. Due to massive theoretical
effort, large number of linear instabilities have been proposed as candidates
for driving fluctuations in the plasma density and electrostatic potential
(for review see e.g.2,3).

Experimental studies of the low-frequency (typically below 1 MHz) tur-
bulent fluctuations in the high-temperature plasma in tokamaks initially
focused on characterization of the small-scale density turbulence. Measure-
ments of the frequency and wave number spectra of the density fluctuations
in the high-temperature plasma regions were performed using scattering of
the microwave4,5 and laser6,7 radiation. Experiments performed between
1976 and 1979 have revealed several important characteristics of the plasma
turbulence, and have triggered theoretical work beyond linear theory of var-
ious instabilities.

One of them was the observation of the broad frequency and the wave
number spectra at both the inner (high temperature) plasma regions and
at the periphery.3 Spectra of developed plasma turbulence do not show any
obvious features which correspond to an underlying linear instability and
typically have maxima in the frequency (and wave number, k) range which
is much lower than that of the expected linear (drift) instability. Some
of these observations have been partially understood within the frame of
simple nonlinear models, such as the Hasegawa-Mima (H-M) model.8 The
analysis of the spectral evolution in the H-M model has shown the possi-
bility of the dual cascade via the three-wave interactions and the transfer
of energy and potential enstrophy in k-space9 (see also Chapter 4.4. by
J. Krommes). This process was found to be similar to the energy and
enstrophy cascades in two-dimensional (2D) Navier-Stokes turbulence (see
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Chapter 1 by G. Falkovich). The inverse energy cascade in the plasma
turbulence, similarly to the 2D fluid turbulence, tends to condense at low
k. As a result, a potential structure is formed whose poloidal component
of the wave vector is small, kθ ≈ 0, while its radial component kr is finite.
Such structures are referred to as zonal flows.9

Zonal flows have been studied theoretically and in numerical simulations
(for review see10). Recently several experimental reports on observations
of zonal flows11–17 have confirmed basic theoretical predictions and demon-
strated the universality of zonal flows. Zonal flows may play many impor-
tant roles in magnetically confined plasma, such as the regulation of the
drift-wave turbulence,18 formation of the transport barriers19 and others.

Detailed experimental studies of the zonal flow - turbulence interaction
have become possible due to the remarkable progress in diagnostics for tur-
bulence studies, such as the heavy-ion beam probe, the Doppler reflectom-
etry, beam emission spectroscopy, and others. More traditional fluctuation
diagnostics, such as the Langmuir probe arrays in combination with mod-
ern signal analysis techniques also contributed to improved understanding
of the plasma turbulence.

The main goal of these lectures given at the Summer School by M. Shats
is to introduce some aspects of turbulence in toroidal magnetized plasma
from experimental point of view. Though it is impossible in two lectures
to even mention all plasma diagnostics relevant to the turbulence studies,
we will select several diagnostics, which in our view, have significantly con-
tributed to the progress in understanding plasma turbulence in recent years.
This selection is highly subjective, nevertheless it gives a feeling about the
direction in which experimental plasma turbulence studies are moving.

In Section 2, we describe some experimental techniques for studying tur-
bulence in magnetized plasma, such as the Langmuir probes, collective scat-
tering of electromagnetic waves by the density fluctuations, reflectometry,
the Doppler reflectometry, beam emission spectroscopy, and the heavy-ion
beam probe technique. In Section 3 spectral analysis techniques are de-
scribed, in particular higher-order spectral analysis and spectral transfer.
Section 4 illustrates application of the spectral transfer analysis to exper-
imental results from the H-1 heliac. Experimental evidence of the inverse
energy cascade is presented. In Section 5 we describe a model experiment in
two-dimensional fluid turbulence to compare physics of the inverse energy
cascade and generation of large coherent structures in fluids with generation
of zonal flows in plasma turbulence. Experimentally identifiable signatures
of zonal flows in plasma are also illustrated.
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5.2. Experimental techniques and diagnostic tools in
plasma turbulence

Main difficulties in experimental studies of turbulence are related to:

(1) usual problems in understanding turbulence in any medium;
(2) limited accessibility due to the high temperature and high vacuum con-

ditions, intense fluxes of particles and heat from the plasma;
(3) difficulties in interpretation of measurements which are typically limited

to just a few spatial locations;
(4) difficulty of imaging and visualization of turbulent fields in fully ionized

plasma;
(5) the multi-field nature of the plasma turbulence: simultaneous presence

of fluctuations in the density, temperature, electric fields, magnetic
fields, etc.

Plasma turbulence has been studied using a variety of tools and tech-
niques. One can adopt several ways of classifying the plasma fluctuation
diagnostics. For example, they can be classified according to the measured
plasma parameters, such as the fluctuations in the electron density, elec-
trostatic potential, electron temperature, magnetic field, etc. Turbulence
diagnostics can also be viewed according to the physical principles used for
the measurements, such as the refractive index measurements, scattering of
the electromagnetic radiation, measurements of the plasma particle fluxes
and others.

In this section we do not overview plasma turbulence diagnostics. There
are several good review papers, which cover diagnostics used in plasma tur-
bulence studies, such as.20,21 For the state-of-the-art methods in plasma
diagnostics, including the turbulence measurements, one should consult
Proceedings of the Topical Conferences on High-Temperature Plasma Di-
agnostics held bi-annually. The latest Proceedings have been published
in Reviews of Scientific Instruments, Volume 75, Issue 10, 2004. Here we
briefly describe selected experimental techniques which have been particu-
larly successful in characterizing key plasma turbulence phenomena in the
last 15-20 years.

5.2.1. Langmuir probes

Langmuir probes22,23are probably the most basic tools for the plasma tur-
bulence studies. They are relatively easy to design, and they have excellent
spatial resolution which is determined by the size of the probe tip and by
the accuracy of its positioning within the plasma. However they have a
somewhat limited applicability in toroidal plasma experiments since they
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cannot withstand very high fluxes of particles and energy. As a result,
their applications are limited to either the peripheral plasma in large high-
temperature experiments, or to the low-temperature plasma in the smaller-
scale laboratory experiments, such as for example, the H-1 heliac.

Langmuir probes provide measurements of the electron density, ne, elec-
trostatic potential, φ, the electron temperature, Te and their fluctuations,
ñe, φ̃, and T̃e. When several probe tips are mounted on the same probe
shaft, Langmuir probes can be used to measure the fluctuation wave num-
bers and various components of the turbulent electric fields.

Isi
�p�f

Ise

Ion saturation current

Electron saturation current

Ions collected Electrons collected

V

ceramic
rod

Tungsten
tips

(a) (b)

Fig. 5.1. (a) Current-voltage characteristic of the Langmuir probe in plasma. (b) Design
of the 4-pin Langmuir probe

The current-voltage characteristic of a Langmuir probe in the plasma
is shown in Fig. 5.1.(a). The potential at the probe corresponding to the
zero current is referred to as the floating potential, φf . A Langmuir probe
will draw an electron current, I, when biased to a voltage V > φf . When
the probe is biased at V < φf , it collects ions. At sufficiently high negative
bias, the current to the probe saturates at the level of the ion saturation
current :

Isi = e−1/2qApnecs, (5.1)

where

cs =

√
q(ZTe + Ti)

mi
. (5.2)

is the ion acoustic velocity, Te and Ti are the electron and ion temperatures
respectively, Ap is the probe collecting area, mi is the ion mass, and Z is
the ion charge state.
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At sufficiently high positive bias voltage, the electron probe current
saturates at the level of the electron saturation current,

Ise =
1
4
qApneVte, (5.3)

where

Vte =
√

8qTe

πme
. (5.4)

is the electron thermal velocity. The positive bias potential φp, correspond-
ing the the electron saturation current, is referred to as the plasma potential.
For V < φp, the probe current can be expressed as22

I = Ise exp
(
V − φp

Te

)
− Isi. (5.5)

The electron temperature Te can be determined from the slope of a semi-
log plot of I versus V . This slope is equal to e/kTe in the electron-retarding
region (V < φp).

Thus several basic plasma parameters and their fluctuations can be
deduced from the probe I − V characteristic if the bias voltage is swept
sufficiently fast. In some cases, the sweep frequency may limit the time
resolution of the probe measurements.

An alternative solution may be in using a probe which has several tips bi-
ased at different potentials. Such a probe design is illustrated in Fig. 5.1.(b).
This an extension of the principle of the triple probe.24 Triple probes allow
instantaneous values of the electron temperature Te, as well as the electron
density to be determined. The electron temperature can be derived by con-
tinuously sampling two points on the characteristic, the floating potential,
φf , and a positive potential, φ+, corresponding to a current which is equal
to Isi but is oppositely directed. In this case the electron temperature can
be determined as24

Te =
(φ+ − φf )

ln 2
. (5.6)

The plasma potential can also be determined from the triple probe as23

φp = φf + αTe, (5.7)

where

α = −1
2

ln
(

2π
me

mi

(
1 +

Ti

Te

)
(1 − δ)−2

)
, (5.8)

and δ is the secondary electron emission coefficient.
The ability of the triple probe to simultaneously measure fluctuations

in the floating potential and in the electron temperature is particularly
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valuable in the turbulence studies. As will be shown below, fluctuations
in the plasma potential is one of the key parameters which determine the
turbulence-driven transport. The plasma potential can be deduced from
the triple probe data using Eq. (5.7). Also, the time-resolved measure-
ments of Te allow time-varying electron density ne to be derived from the
measurements of the ion saturation current Isi, Eq. (5.1).

5.2.2. Characterization of turbulent transport using probes

Langmuir probes can be arranged in arrays to characterize plasma turbu-
lence. In this subsection we consider measurements of the turbulence-driven
fluxes using Langmuir probes. We limit our discussion to the measure-
ments of the particle fluxes due to electrostatic fluctuations. The particle
flux measurements are crucial for understanding the roles of turbulence in
the plasma confinement and require simultaneous characterization of the
fluctuations in the radial velocity of particles and the density fluctuations.
The Langmuir probe array is the only diagnostic capable of performing such
measurements with required spatial and temporal resolution.

In case of the electrostatic turbulence (e.g., drift-wave turbulence, see
Chapter 4 by J. Krommes) electrons and ions fluctuate in the radial di-
rection due to the E × B drift in the fluctuating poloidal electric field,
Ẽθ,

ṽrad =
Ẽθ

B
=
kθφ̃

B
. (5.9)

The fluctuation-driven flux is then

Γ̃fl =
ñẼθ

B
=
kθ

B

(
ñφ̃

)
. (5.10)

The time-average fluctuation-driven particle flux can also be defined in
the frequency domain as:25

Γfl =
2
B

∞∫
0

dω [PnnPEE ]1/2|γnE | cos [αnE ], (5.11)

where Pnn and PEE are the spectral power densities of the fluctuations in
the electron density and poloidal electric field. The coherence 0 ≤ |γnE | ≤ 1
is defined via the cross- and auto-power spectra of the fluctuations as

γnE(ωk) =

(
[Re (PnE(ωk))]2 + [Im (PnE(ωk))]2

Pnn(ωk)PEE(ωk)

)1/2

, (5.12)
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while αnE is the phase shift between ñ and Ẽθ:

αnE(ωk) = arctan
(
Im (PnE(ωk))
Re (PnE(ωk))

)
. (5.13)

Here Im and Re denote the imaginary and the real parts of the cross-
spectra.

Eq. (5.11) shows that the particle flux can be reduced either by suppress-
ing the turbulence (Pnn and PEE reduction), or by decorrelating density
and Eθ fluctuations (γnE → 0), or by changing the relative phase αnE be-
tween them. Depending on the phase shift α�n �E between ñ and Ẽθ, the
time-average flux can be zero (α�n �E = π/2), positive (radially outward), or
negative (radially inward). Below we will illustrate that all these parame-
ters affect turbulent particle fluxes in magnetized plasma.

�

�

B
�y

�f�

�+1

����f3

Iis1

Iis3

����f2
Iis2

Fig. 5.2. Example of the probe array suitable for the characterization of the turbulence-
driven particle flux.

Figure 5.2. shows the geometry of the Langmuir probe array capable of
measuring the fluctuation-driven flux. Three triple probes, (Iis1, φf1, φ+1),
(Iis2, φf2, φ+2), and (Iis3, φf3, φ+3) measure the electron temperature and
the plasma potentials at three poloidally shifted locations in the plasma.
Since fluctuations in toroidal plasma are strongly elongated in toroidal di-
rection (toroidal wave numbers, kϕ, are much smaller than either poloidal
kθ, or radial kr wave numbers), a small relative shift of the triple probe
tips in toroidal direction does not affect phases of the fluctuations. Probes
1 and 3 give φp1 and φp3 using Eq. (5.7), such that the fluctuations in the
poloidal electric field can be computed as Ẽθ=(φ̃p1− φ̃p2)/(∆y). This Ẽθ is
multiplied with the fluctuations in the electron density to obtain Γ̃fl using
Eq. (5.10) or Eq. (5.11). ñ is deduced from the ion saturation current of
the probe 2 using Eq. (5.1) and Te2.
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In practice, in many experiments floating potentials are often used in-
stead of the plasma potentials. This can only be justified when φ̃f and T̃e

are in phase, which needs to be proven experimentally. If this is the case,
the probe array can be greatly simplified.

2 4 6t (ms)

-5

5

0

	 (a.u.)
fl

	 (a.u.)
fl

	 (a.u.)
fl

0

-5

10

-2

2

0

(a)

(b)

(c)

Fig. 5.3. Time-resolved fluctuation-driven flux,Γfl=�n �Eθ / B

An example of the experimentally measured time-resolved fluctuation-
driven flux is shown in Fig. 5.3.. It is seen that Γfl has a bursty structure,
such that it is the statistics of positive and negative bursts which determines
the direction of the time-average flux. Three plots in Fig. 5.3. correspond
to the inward (a), outward (b), and zero-average flux (c).

So far we have assumed that the particle fluxes driven by the turbulent
fluctuations are the same for electrons and ions, in other words, Γ e

fl= Γ i
fl.

There are however several physics effects which can break this balance. It
has been mentioned in the Introduction that turbulence can drive plasma
flows, such as, for example, zonal flow. The Reynolds stress is an example of
such a mechanism. Turbulence induced Reynolds stress drives the plasma
flow which can be associated with the radial current:26

Jr =
mine

eB

∂

∂r
〈ṽriṽθi〉 . (5.14)

Another example is the flow driven due to the finite-Larmor-radius
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(FLR) effect.27,28 In any case such flow generation would be manifested
as the fluctuation-driven radial current

Jr = e
(〈
ñiṼri

〉
−

〈
ñeṼre

〉)
, (5.15)

which can change the radial electric field and generate plasma flow in either
poloidal or toroidal direction.

The first experimental evidence of the fluctuation-driven radial electric
current has been found in the H-1 heliac.29 Fluctuations in the ion radial
velocity were measured using the so-called Mach (or paddle) probe. Such
probes are used to provide information about plasma flow velocities.30 A
Mach probe typically consists of two identical collectors separated by an
insulator. Both collectors are negatively biased into the ion saturation
current. According to Eq. (5.1) the ion saturation current is dependent on
the velocity at which the ions stream towards the probe. Therefore, if the
plasma drifts with some velocity perpendicular to the axis of the probe,
the two probe tips will collect ions arriving with different velocities and
therefore measure different currents.

If the ion gyroradius is larger than the probe size, then such a probe
is referred to as ”unmagnetized”. A revision of the Bohm theory suitable
for the unmagnetized Mach probe has been presented in.31 Since the Mach
probe is unmagnetized, it can be oriented to be sensitive to the ion radial
velocity and its fluctuations Ṽri. This provides an independent estimate for
the ion fluctuation-driven flux Γi =

〈
ñiṼri

〉
. The fluctuation-induced flux

for the electrons was assumed a result solely of Ẽ × B , where the main
contribution comes from the poloidal Ẽ component (Ẽθ ) and the toroidal
B component (Bt). It was found that the fluctuations in the ion radial
velocity are significantly lower than those for electrons. As a result the
fluctuation-driven fluxes are different for electrons and ions, which leads to
the production of a radial current.29

5.2.3. Collective (Bragg) scattering of electromagnetic

waves by density fluctuations

Experimental results obtained using collective scattering diagnostic have
greatly influenced studies of turbulence in 1970s and 1980s. The most
important result is that the wave number spectra of the plasma turbulence
are broad and have maximum at rather low wave numbers. Collective,
or Bragg scattering diagnostic is capable of directly measuring the wave
number spectra of the density fluctuations in plasma.

The process of scattering of electromagnetic waves in plasma can be
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thought of as follows. The incident electromagnetic wave impinges on
plasma particles. Particles are accelerated in the wave. Accelerated parti-
cles emit electromagnetic radiation in all directions. This emitted radiation
is the scattered wave.

Whether the wave is scattered by electrons participating in collective
motion, or by the unshielded electrons, is determined by the scattering
parameter α:

α =
1

kλD
, (5.16)

where λD is the Debye length and k is the wave number of the plasma
density fluctuations. When α ≥ 1, the main contribution to the scattered
wave comes from oscillations of wavelength longer than the Debye length.
This is called the collective domain. In the process of scattering the incident
electromagnetic wave (k0, ω0) interacts with the plasma wave (k, ω) such
that the scattered wave (ks, ωs) is generated. The momentum and energy
are conserved in each act of scattering:

k = ks − k0, ω = ωs − ω0, (5.17)

The wave vector diagram illustrating this is shown in Fig. 5.4.. The angle,
θ between the wave vectors of the incident and the scattered waves is called
the scattering angle. By selecting different scattering angles, scattering by
different wave lengths in the plasma can be studied. The relation between
the scattering angle and the fluctuation wave vector k is given by the Bragg
rule:

k = 2k0 sin θ/2, (5.18)

�

ks

k0

k

Fig. 5.4. Wave vectors of the waves participating in Bragg scattering

The Bragg rule follows from the fact that the wave vector triangle in
Fig. 5.4. is isosceles because

ω0 ≈ ωs >> ω, ks =
ωs

c
=
ω + ω0

c
≈ k0 =

ω0

c
. (5.19)
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An example of the microwave scattering geometry is shown in Fig. 5.5..
Detailed description of this diagnostic can be found in.32 The microwave
beam at the wavelength of λ0 ≈ 2 mm is focused into the plasma using the
horn-mirror antenna. This radiation, scattered at four different angles in
the plasma, is collected using four similar receiving antennas. It should be
noted that the size of the scattering volume is determined by the intersec-
tion of the radiation patterns of the incident and the receiving antennas.
This volume is larger for the smaller scattering angles (longer wave length
of the plasma fluctuations). The larger the scattering angle, the better the
spatial resolution of the diagnostic.

(a) (b)

re
c
e
iv

e
rs

transmitter

scattering
volumes

Fig. 5.5. (a) Schematic of the microwave scattering diagnostic in the H-1 heliac. (b)
Photograph of the receiving microwave mirror-horn antennas installed inside the H-1
vacuum tank.

As seen from Eq. (5.18), for a given wave number of the density fluctu-
ation, the scattering angle becomes very small if lasers are used instead of
the microwave sources. For example, to detect fluctuations having λ = 2
mm one needs to collect the microwave beam at λ0 = 2 mm scattered at
θ = 60 degrees. If one uses a CO2 laser at λ0 = 10.6 µm, the scattering
angle should be θ ≈ 0.3 degrees, or 2.66 mrad. For such small scattering
angles the size of the scattering volume extends beyond the diameter of the
plasma cross-section, such that the spatial resolution becomes poor. In this
case other techniques, such as the crossed laser beams are used. For details
see, for example.3

Scattered radiation is then analyzed, and if the heterodyne detection
scheme is used,32 the direction of the propagating density waves can be
determined in addition to their amplitude and the frequency spectra.
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5.2.4. Reflectometry in fluctuation studies

Reflectometry has been widely used for measuring density fluctuations in
the high temperature plasma. Measurements rely on the existence in the
plasma of the cut-off layer, at which the refractive index for the probing
electromagnetic wave is zero. For example, for the ordinary electromagnetic
wave in plasma (a wave whose electric field vector E is parallel to the local
vector of the magnetic field B)

N2 = 1 −
ω2

pe

ω2
= 0. (5.20)

Here ωpe is the electron plasma frequency, and ω is the frequency of the
probing electromagnetic wave. The critical density, at which the wave is
reflected at the cut-off layer is given by

nc =
meε0ω

2

e2
. (5.21)

The phase difference between the incident and reflected waves is sensitive
to the position of the cut-off layer. Since in the presence of turbulence the
layer of the critical density fluctuates, measurements of the phase and of the
amplitude of the reflected wave can, in principle, give information about
local fluctuations at the cut-off layer. A great advantage of the reflectome-
ters is a relatively easy access to the plasma since both the incident and the
reflected beams are transmitted through the same vacuum window. Reflec-
tometers allow radial scans of the cut-off layer by sweeping the microwave
frequency. They possess good spatial resolution since the cut-off layer is
very thin.

The schematic of a reflectometer is shown in Fig. 5.6.. This is an exam-
ple of the heterodyne detection scheme in which the reflected wave at the
frequency f0 + ∆f is mixed with the wave of the local oscillator (LO) to
produce a signal at the intermediate frequency, f0−fLO+∆f , which is then
processed in the quadratic (IQ) detector to produce two low-frequency out-
put signals proportional to the sine and cosine of the phase. The reflected
wave is characterized by its amplitude, A, and the phase, ϕ.

If the reflected wave is coherent, strong phase fluctuations are usually
measured, while the fluctuations in the amplitude are weak. However, in
many experimental situations the reflected wave is incoherent, such that its
phase is randomly distributed around zero. In this case the interpretation
of the reflectometer data is not straightforward and requires additional
modelling.

Main reasons for difficulties in the interpretation of the reflectometer
signals are as follows:

• “Rigid” motion of the cutoff surface changes the path length x (see
Fig. 5.6.) which affects the phase ϕ of the reflected wave;
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Fig. 5.6. Schematic of the microwave reflectometer. Figure courtesy G.D. Conway.

• Bragg back scattering, or the scattering at θ = 180 degrees contributes
to reflected wave. In this case fluctuations in the cut-off layer, whose
wave number satisfy k = 2k0 (see Eq. 5.18), “pollute” the reflected
signal.

• The interference in reflected microwaves may be caused by “roughness”
of the reflection surface when k⊥∇ne or k⊥ B.

For details on the problems with the interpretation of the reflectometer
data and ways of solving it see references33–36 which describe various mod-
els used in the interpretation of measurements (“random phase screen”,
“distorted mirror” etc.).

5.2.5. Doppler reflectometry

The Doppler reflectometer can be considered as a hybrid between a re-
flectometer and collective scattering diagnostic.17,37 The schematic of the
Doppler reflectometer is shown in Fig. 5.7.. The experimental setup consists
of the microwave reflectometer with antennas poloidally tilted to deliber-
ately misalign the angle θ between the incident beam and the normal to
the plasma cut-off layer. The diagnostic is sensitive to the perpendicular
density fluctuation having a wave number determined by the Bragg rule
(Eq. (5.18)), k⊥ = 2k0 sin θ/2.

Poloidal motion of the density turbulence at the cutoff layer induces
a Doppler frequency shift fD in the reflected signal. This frequency shift
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Fig. 5.7. Schematic of the Doppler reflectometer. Figure courtesy G.D. Conway.

is proportional to the perpendicular rotation velocity of turbulence, u⊥ =
VE×B + Vphase (Vphase is the phase velocity of turbulent fluctuation in the
plasma frame of reference):

fD =
u⊥k⊥

2π
=
u⊥2 sin θ/2

λ0
. (5.22)

By changing the tilt angle θ and by measuring the received power, a per-
pendicular wave number spectrum S(k⊥) can be obtained.

In many experimental situations the Doppler shift due to the E×B drift
dominates over the phase velocity in the plasma frame, VE×B >> Vphase.
As a result, the frequency shift, fD, will be proportional to the radial electric
field, Er. Radial electric field fluctuations Ẽr will appear in fD and can
be detected as a spectrally broadened feature around fD in the scattered
wave spectrum. This technique has been successfully used to detect low-
frequency oscillations in Er due to the presence of the geodesic acoustic
mode.17

5.2.6. Optical imaging of turbulent fluctuations

The spectral line radiation emitted by excited neutrals and ions contains
useful information about plasma parameters, such as the electron tem-
perature and density. However, in the high-temperature interior of the
fusion-relevant plasma, atoms are fully ionized, such that only the impu-
rity radiation can be measured for the diagnostic purposes.
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When the neutral beam is injected into the plasma, the beam atoms
become collisionally excited and radiate. This radiation due to the inter-
action of the beam particles with electrons and ions is used to derive local
density and its fluctuations in the diagnostic method referred to as the beam
emission spectroscopy (BES).38,39

Figure 5.8. shows experimental setup of the BES diagnostic on the DIII-
D tokamak. A beam of deuterium atoms having energy of E = 75 keV is
launched tangentially into the plasma. Such a high energy of the beam
atoms leads to a Doppler shift in the wave length of the radiated emission.
This can be used to distinguish the radiation emitted by the beam parti-
cles from the neutral emission originated at the plasma edge. The light is
collected along several chords perpendicular to the neutral beam. In this
example a matrix of 4×4 optical fibres is imaged into the plasma such that
the light in each of the optical channels comes from a small volume in the
plasma determined by the intersection between the neutral beam and the
fibre image in the plasma. Spatial resolution also depends on the radiative
lifetime, τ , of a chosen excited state. This should be small (10−9 - 10−8 s)
because spatial resolution is proportional to the square root of the beam
energy (velocity) and the lifetime: l ∝

√
Eτ .

Spectrometers
Optical
fibers

Tunable
Filter

Lenses
Objective
Lens

Photodiodes

75 keV D Neutral Beam
0

Toroidal
Plasma

�R

�z

Viewing
chord
geometry

Fig. 5.8. Setup of the beam emission spectroscopy on the DIII-D tokamak. Figure
courtesy G. McKee

The relative level of the local density fluctuations in each of the inter-
section volumes is proportional to the relative level of the fluctuations in
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the intensity of the light emission I:

ñ

n
= K(Te, ne)

Ĩ

I
, (5.23)

where the proportionality constant K is determined by the atomic physics
relevant to the excitation of a given spectral line and depends on the electron
temperature and density.

Though the line emissivity is proportional to the electron density, fluc-
tuating velocity field can also be obtained from the measured fluctuating
density. In this case two-dimensional cross-correlation analysis of the ñ-field
is used. This method has been successful in identifying radially sheared
zonal flows in the DIII-D tokamak.13

5.2.7. Heavy ion beam probe

Measurements of the electrostatic potential fluctuations is one of the most
challenging problems in experimental plasma turbulence studies. With the
exception of the Langmuir probes, whose operational range is limited to the
cold edge plasma, the heavy ion beam probe (HIBP) is the only diagnostic
capable of providing information about the electrostatic potential from the
plasma core.40,41

The principle of the diagnostic is as follows. A beam of heavy ions
(e.g. gold, caesium, or thallium) of very high energy (hundreds of keV)
is launched into the magnetized plasma. High energy and large mass of
ions are needed to increase the ion gyroradius, ρi= (mivi⊥) /qB (where
mi is the ion mass, vi⊥ is the component of the ion velocity perpendicular
to the magnetic field B, and q is the ion charge). In this case ρi exceeds
the diameter of the plasma column and ions will not be confined by the
magnetic field. As the incident ion beam propagates through the plasma,
the probe ions are ionized through the electron impact collisions. As a
result, their charge increases and the trajectories of these secondary ions
deviate from the trajectory of the primary ion beam as shown in Fig. 5.9.. A
small fraction of the primary beam ions enters the detector. The energy of
the secondary ions originated in a small sample volume (determined by the
intersection of trajectories of primary and secondary ions) is then analyzed.
Their energy exceeds the energy of the primary ions by the amount equal to
the electric potential in the sample volume. The intensity of the secondary
beam reflects the electron density in sample volume. The intensity S of the
secondary beam is given by:16

S = σne(r)(δr)e−
�

σnedlI0, (5.24)
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where I0 is the injected beam current, σ is the ionization cross-section
by electron impact, δl is the length of the sample volume determined by
the width of the detector aperture. The integral extends along the beam
trajectory. The position of the sample volume can be swept through plasma
by changing the direction and energy of the primary beam.

detector

Ion
source

I ions
+

I ions
+

I ions
++
I ions
++

sample
volume

secondary

primary

Fig. 5.9. Schematic of the heavy ion beam diagnostic.

Fluctuations in the observed energy and intensity of the secondary ion
beam are proportional to fluctuations in electrostatic potential and electron
density respectively. The HIBP diagnostic has become a powerful tool
capable of providing valuable information on the low-frequency potential
fluctuations from the inner plasma regions in tokamaks and stellarators
(see, for example,15,16).

5.3. Spectral analysis techniques

In this section spectral analysis techniques used in experimental turbulence
studies are overviewed. Turbulence, which to large extent determines the
plasma behaviour, is characterized by broad wave number spectra whose
maxima are observed at the longest measured scales.3 Since unstable waves,
which generate turbulence are initially unstable only in a limited spectral
range, mechanisms of the nonlinear wave-wave interaction are needed to
explain observations.

For example, three-wave interactions may lead to the energy cascade
which spreads spectral energy over the spectrum. In two-dimensional (2D)
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turbulence42 (see Chapter 1) and in magnetized plasma9 spectral energy
is transferred to lower wave numbers (larger scales) in the process of the
so-called inverse energy cascade. If the energy dissipation at large scales is
low, spectral energy can condense in large coherent structures, such as, for
example, vortex structures (for review see43) and zonal flows.44

Signatures of nonlinear interactions in broad spectra can be revealed
by analysing the higher order moments of the turbulence spectra. The
presence of the three-wave interactions can be detected using a bispectrum.
Four-wave interactions can be revealed by means of a trispectrum.

Bispectra, which measure the amount of the phase correlation between
three spectral components, have been used in plasma research for a long
time.45–47 Other higher order spectral characteristics, such as the bicoher-
ence (normalized bispectrum), trispectrum,48,49 etc., have been developed
in recent years.

The higher order spectral analysis does not determine however the di-
rection of the energy transfer. The nature and the direction of the spectral
transfer have direct impact on the way in which the instability-driven tur-
bulence is saturated, on the magnitude and shape of the spectrum, and
ultimately on the nature of the particle and energy transport produced by
turbulence.

A method of computing the power transfer function (PTF) was de-
veloped and applied to the fluid and plasma turbulence in 1980s. The
method allows quantitative estimates of the nonlinear coupling coefficients
and the energy cascades from experimentally measured turbulent signals
to be made.50,51 In the PTF technique, linear and quadratic transfer func-
tions are estimated from the measured fluctuation signals x(s) and y(s) in
either temporal, or in spatial domain. Spectral transfer is described by the
wave coupling equation which is appropriate in a single-field turbulence.
The PTF method is based on the quantitative description of nonlinear in-
teractions between different scales using statistically averaged estimation
of the power spectra, bispectra and other higher order moments.

The technique was first applied to experimental data in the nonlinear
stages of a transition flow of a wake behind a thin flat plate.52 Later this
technique was applied to the turbulence measured at the edge plasma of
the Texas Experimental Tokamak.51

A modified version of the PTF technique was proposed in.53 In the
modified method, non-ideal spectra which do not participate in the three-
wave interactions are taken into account. The method was tested using
simulated 1D turbulence data generated using the Hasegawa-Mima model
and 2D data using the Terry-Horton model. Both of these are the single-
field models. The modified technique was able to accurately reproduce the
input characteristics (the linear growth rate and nonlinear energy transfer)
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of the simulated data.
In this section we will overview the higher order spectral analysis

(HOSA) techniques, and then will describe the PTF technique. The ampli-
tude correlation method is another technique suitable for studying energy
transfer between different spectral regions. The amplitude correlation tech-
nique complements the PTF analysis in situations where the coherent phase
interactions dominates over the random-phase interactions.

5.3.1. Higher-order spectral analysis

The presence of three-wave interactions in turbulence can be detected by
means of a bispectrum.45 The auto-bispectrum of a signal is defined as:

B(f1, f2) = 〈XfX
∗
f1
X∗

f2
〉, f = f1 + f2, (5.25)

where Xf is a Fourier transform of the signal under investigation and ∗

denotes the complex conjugate.
Auto-bispectra measure the statistical relationship between spectral

components at the frequencies f1, f2 and f = f1 + f2.
If the Fourier transform of the signal is Xf = Afe

φf , the auto-
bispectrum of the signal can then be expressed as:

B(f1, f2) = 〈Af1Af2Afe
(φf−φf1−φf2 )〉, f = f1 + f2 . (5.26)

If waves at f1, f2 and f have statistically independent random phases
(like in a Gaussian signal), the resulting biphase φ = φf − φf1 − φf2 of the
polar representation (Eq. (5.26)) will be random and the averaged value
of the bispectrum will be zero. If, however, a coherent phase relationship
exists due to the nonlinear coupling between these waves, the auto-bispectra
(averaged over many realizations) will have a finite value.

A similar definition can be given to a bispectrum between two signals,
x(t) whose Fourier transform is Xf and y(t) whose Fourier transfer is Yf .
A cross-bispectrum is a useful characteristic of three-wave coupling effects
between two turbulent spectra.

B(f1, f2) = 〈YfX
∗
f1
X∗

f2
〉 f = f1 + f2 . (5.27)

A nonzero bispectrum is indicative of either (1) strong three-wave inter-
actions or (2) weak interactions between spectral components having large
amplitudes, as can be seen from the definition of the bispectrum, Eq. (5.26).
To avoid this ambiguity, the bicoherence, which is the bispectrum normal-
ized by the amplitude of the interacting waves can be used to accentuate
the strength of the three-wave interactions:

Bic2(f1, f2) =
|〈YfX

∗
f1
X∗

f2
〉|2

〈YfY
∗
f 〉〈Xf1X

∗
f1
〉〈Xf2X

∗
f2
〉 , f = f1 + f2 (5.28)

The value of the bicoherence varies between 0 and 1, similarly to the
usual 1st order coherency given by Eq. (5.12).
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5.3.2. Wave coupling equation

The wave coupling equation which describes the time evolution of the spec-
tral components in the turbulence spectra lies in the heart of the spectral
transfer analysis. This equation has already been introduced in Chapter 1
(Eq. (5)) as a kinetic wave equation and in Chapter 4 (Eq. (96)) during
the discussion of the weak-turbulence theory.

The wave coupling equation can be expressed as follows:

∂φ(k, t)
∂t

= (γk + iω̄k)φ(k, t) +
1
2

∑
k1,k2,

k=k1+k2

ΛQ
k (k1, k2)φ(k1, t)φ(k2, t), (5.29)

where ψ(x, t) is the fluctuation field, φ(k, t) is the spatial Fourier spectrum
of the fluctuation field ψ(x, t) =

∑
k

φ(k, t)eikx.

The wave coupling equation describes the rate of change of the spectral
components due to linear and nonlinear effects, namely, due to the mode
growth at the rate γk, its dispersion ω̄k, and due to the wave-wave coupling.
The coupling coefficient ΛQ

k (k1, k2) represents the strength of the wave cou-
pling. A wave (k, ω) thus decays into two waves (k1, ω1) and (k2, ω2) or two
waves merge into one.

This equation describes the wave coupling in the weak-turbulence theory
in the random-phase approximation, but a similar equation can be derived
from a more specific models, such as the Hasegawa-Mima model (see Sec-
tion 1.4 of Chapter 4). Equation (5.29) can also be constructed on purely
phenomenological grounds using a black-box approach as will be discussed
in the next subsection. It should also be noted that to analyze the spectral
transfer in plasma turbulence using the wave kinetic equation one needs
to justify the validity of the single field description of turbulence. Such
description is not always valid, however it is possible in several important
models (e.g. in the Hasegawa-Mima model) and in some experiments, as
will be discussed below.

The Hasegawa-Mima equation is the basis of the simple drift wave
model,8,54

∂

∂t
(∇2φ− φ) − [(∇φ× ẑ) · ∇]

[
∇2φ− ln (

n0

ωci
)
]

= 0. (5.30)

If we expand φ(x, t) in a spatial Fourier series, as

φ(x, t) =
1
2

∑
k

(φk(t)eik·x + c.c), (5.31)
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where k is k⊥, Eq. (5.30) is reduced to

∂φ(k, t)
∂t

+ iω∗
kφk(t) =

1
2

∑
k1,k2

k=k1+k2

Λk(k1, k2)φ(k1, t)φ(k2, t). (5.32)

Here, the matrix element Λk1,k2 is given by

Λk1,k2 =
1

1 + k2
(k1 × k2) · ẑ[k2

2 − k2
1]. (5.33)

ω∗
k is the normalized (by ωci) drift wave frequency given by

ω∗
ci =

−kθTe∂(lnn0)/∂r
eB0(1 + k2)ωci

. (5.34)

Equation (5.32) is the Hasegawa-Mima equation in the Fourier space.
It contains the mode coupling of different modes of fluctuations and the
linear dispersion of the modes, and it has exactly the same form as the
wave coupling equation, Eq. (5.29).

As explained in Chapter 4 (section 1.4.1), when the background density
gradient and the adiabatic electron response are neglected, the Hasegawa-
Mima equation, Eq. (5.30), closely resembles the equation for the stream
function ψ, which can be derived from the 2D Euler equation for the vor-
ticity:

∂

∂t
∇2ψ − [(∇ψ × ẑ) · ∇]∇2ψ = 0. (5.35)

The Fourier-transform of the 2D Euler equation for the streamfunc-
tion takes a form which is very similar to the wave coupling equation,
Eq. (5.29).8

5.3.3. Computation of the power transfer function

Below we follow the description of the PTF technique given in.50,51

The spectrum φ(k, t) in Eq. (5.29) can be represented by its amplitude
and phase. The amplitude is slowly varying in time compared with the
phase changes φ(k, t) = |φ(k, t)|eiΘ(k,t).

The spectrum change in time ∂φ(k, t)
∂t

, can then be estimated using a
differential approach:

∂φ(k, t)
∂t

= lim
τ−→0

(
||φ(k, t+ τ)| − |φ(k, t)||

τ

1
|φ(k, t)|+i

Θ(k, t+ τ) − Θ(k, t)
τ

)φ(k, t).

(5.36)
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Substituting Eq. (5.36) into Eq. (5.29) and solving for φ(k, t+τ) (where
τ is very small), we obtain:

φ(k, t+ τ) =
ΛL

k τ + 1 − i[Θ(k, t+ τ) − Θ(k, t)]
e−i[Θ(k,t+τ)−Θ(k,t)]

φ(k, t)

+
1
2

∑
k1,k2,

k=k1+k2

ΛQ
k (k1, k2)τ

e−i[Θ(k,t+τ)−Θ(k,t)]
× φ(k1, t)φ(k2, t),

(5.37)

where ΛL
k = γk + i�k.

The spectrum at time t + τ , φ(k, t + τ) is thus defined by the spec-
trum φ(k, t) at t through linear coefficient ΛL

k and quadratic coefficient
ΛQ

k (k1, k2). To simplify, the following definitions are used:
Xk = φ(k, t), Yk = φ(k, t+ τ),

Lk =
ΛL

k τ + 1 − i[Θ(k, t+ τ) − Θ(k, t)]
e−i[Θ(k,t+τ)−Θ(k,t)]

,

Qk1,k2
k =

ΛQ
k (k1, k2)τ

e−i[Θ(k,t+τ)−Θ(k,t)]
,

(5.38)

where k = k1 + k2. Equation (5.37) can now be written as:

Yk = LkXk +
1
2

∑
k1,k2,

k=k1+k2

Qk1,k2
k Xk1Xk2 (5.39)

The wave coupling equation Eq. (5.29) is thus related to a nonlinear
system (described by Eq. (5.39)) in which the output Yk is composed of
linear and quadratic nonlinear responses to the input signal Xk.

Equation (5.39) is the simplest form of an equation which can be related
to wave-wave coupling, assuming that the four-wave coupling and the higher
order processes are much weaker than the three-wave coupling. The tech-
nique to derive coefficients Lk and Qk1,k2

k of Eq. (5.39) from the measured
fluctuation series will be described in the next subsection. These coefficients
serve as fundamental quantities for the estimation of the growth rate, the
wave-wave coupling coefficients, and eventually of the energy transfer in
the spectrum.

The phase shift at wave number k between t and t+ τ can be estimated
from the cross-power spectrum,

e−i[Θ(k,t+τ)−Θ(k,t)] =
〈YkX

∗
k〉

|〈YkX∗
k〉|

. (5.40)

The coupling coefficient ΛQ
k (k1, k2) in Eq. (5.29) can be derived from

the wave coupling coefficients Lk and Qk1,k2
k as,

ΛQ
k (k1, k2) = Qk1,k2

k
〈YkX

∗
k〉

|〈YkX
∗
k〉|

1
τ , k = k1 + k2 . (5.41)
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Multiplying the wave coupling equation (5.29) by φ∗(k, t), we can write
a wave kinetic equation for the spectral power Pk = 〈φkφ

∗
k〉 in terms of

coupling coefficients ΛL
k and ΛQ

k (k1, k2).
Since ∂

∂t [φ(k, t)φ∗(k, t)] = ∂φ(k,t)
∂t φ∗(k, t) + ∂φ∗(k,t)

∂t φ(k, t),
the wave kinetic equation can be written as:

∂Pk

∂t
≈ 2γkPk +

∑
k1,k2,

k=k1+k2

Tk(k1, k2) (5.42)

The power transfer function Tk(k1, k2) quantifies the spectral power
exchanged between different waves in the spectrum due to the three-wave
coupling. It is related to the quadratic coupling coefficient, as

Tk(k1, k2) = Re
[
ΛQ

k (k1, k2)〈φ∗kφk1φk2〉
]
. (5.43)

The energy stored in the electrostatic fluctuations φk can be expressed
as Wk =

(
1 + k2

⊥
)
|φk|2.9 The nonlinear energy transfer function can be

defined as:

W k
NL =

(
1 + k2

⊥
) ∑

k1,k2,
k=k1+k2

Tk(k1, k2), (5.44)

The nonlinear energy transfer function (NETF), W k
NL in Eq. (5.44), and

the linear growth rate, γk in Eq. (5.42), are the main spectral quantities
used in the experimental analysis of the spectral transfer.

5.3.3.1. Derivation of coupling coefficients (Ritz method)

The method of computing the coupling coefficients which characterize a
nonlinear system described by a single input and a single output, has been
proposed by Ritz et al.50 The output of such a black-box system, Yp,
(in either spatial or in temporal domain) contains linear and quadratic
responses to the input signal, Xp, in the form:

Yp = LpXp +
∑

p1>p2
p=p1+p2

Qp1,p2
p Xp1Xp2 + εp (5.45)

where εp is added to represent the noise in the signal.
Coefficients Lp and Qp(p1, p2) quantify linear and quadratic responses.

The subscript p in Equation (5.45) represents either the wave number k, or
the frequency f , depending on a system.

We assume that the measured signals are stationary and that they can
be divided into many statistically similar segments, the realizations. To
derive the coupling coefficients, Eq. (5.45) is multiplied by the complex
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conjugate of Xp. Then by ensemble averaging over many realizations, de-
noted as < >, one obtains:〈

YpX
∗
p

〉
= Lp

〈
XpX

∗
p

〉
+

∑
p1>p2,

p=p1+p2

Qp1,p2
p

〈
X∗

pXp1Xp2

〉
. (5.46)

Here
〈
YpX

∗
p

〉
is the cross-power spectrum of the fluctuations,

〈
XpX

∗
p

〉
is

the auto-power spectrum.
〈
X∗

pXp1Xp2

〉
is the auto-bispectrum. Note that

in Eq. (5.46), the cross-power spectrum term
〈
εpX

∗
p

〉
is ignored since the

cross-power spectrum (and any higher order spectrum, such as
〈
εpX

∗
p1
X∗

p2

〉
which will be encountered in the derivation of Eq. (5.47)) averages to zero
between the signals and noise.

By multiplying Eq. (5.45) with X
′∗
p1
X

′∗
p2

and by ensemble averaging,
we obtain a second equation which contains linear and quadratic transfer
functions,〈

YpX
′∗
p1
X

′∗
p2

〉
= Lp

〈
XpX

′∗
p1
X

′∗
p2

〉
+

∑
p1>p2,

p=p1+p2

Qp1,p2
p

〈
Xp1Xp2X

′∗
p1
X

′∗
p2

〉
,

(5.47)
where p = p1 + p2 = p

′
1 + p

′
2. Here

〈
Y ∗

p Xp1Xp2

〉
is the cross-bispectrum

and
〈
Xp1Xp2X

′∗
p1
X

′∗
p2

〉
is the fourth-order moment.

Eq. (5.47) can be simplified by approximating the fourth-order moments〈
Xp1Xp2X

′∗
p1
X

′∗
p2

〉
by the square of the second-order moments

〈
|Xp1Xp2 |

2
〉

(by neglecting terms with (p′1, p
′
2) �= (p1, p2)).50 This approximation is

based on the random-phase assumption, similarly to the weak turbulence
theory.

Under this approximation, Eq. (5.47) is reduced to:

〈YpXp1Xp2〉 = Lp

〈
XpXp1Xp2

〉
+Qp1,p2

p

〈
|Xp1Xp2 |

2
〉

(5.48)

The determination of the coupling coefficients Lp and Qp1,p2
p is usually

not straightforward: a set of dependent equations (5.46) and (5.48) need to
be solved iteratively.

An example where the coupling coefficients can be easily determined is
a Gaussian input signal. For a Gaussian signal, the auto-bispectrum goes
to zero,

〈
XpXp1Xp2

〉
= 0 such that the coupling coefficients Qp1,p2

p and Lp

are simply determined from Eq. (5.48).
However, many systems such as turbulent fluids and plasmas, do not

allow such a restrictive assumption about the input signal. Generally, the
input should not be considered Gaussian because of the nonlinear history
of the fluctuations.
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5.3.3.2. Derivation of coupling coefficients: modified Ritz method

Applications of the technique described above sometimes yield unphysi-
cally large transfer coefficients for the measured fluctuation data.50 This
problem may arise because the method does not account for the non-ideal
fluctuations. For example, Eq. (5.45) contains only linear response and
the three-wave interactions. Turbulence may contain spectral components
which do not participate in the wave coupling described by Eq. (5.45). The
higher-order nonlinear coupling (e.g., fourth-order, or higher), systematic
errors, etc., may also need to be taken into consideration. To address this
problem, a modified method has been proposed.53

In the modified method, the measured spectra (Xp, Yp) are represented
as the sum of an ideal spectrum (βp, αp), which is driven by linear and
quadratic processes, and a non-ideal spectrum (Xni

p , Y ni
p ) whose compo-

nents are not involved in the linear and the three-wave coupling processes:

Xp = βp +Xni
p , Yp = αp + Y ni

p . (5.49)

The non-ideal spectrum (Xni
p , Y ni

p ) is assumed to be completely uncor-
related with the ideal fluctuation spectrum (βp, αp), which is reasonable for
the noise or any spectrum not described by Eq. (5.45).

Using Eq. (5.49), equation (5.39) can be rewritten in the form

Yp − Y ni
p = Lp(Xp −Xni

p ) +
∑

p1≥p2,
p=p1+p2

Qp1,p2
p (Xp1 −Xni

p1
) × (Xp2 −Xni

p2
).

(5.50)
The same procedure as in the original method is applied to Eq. (5.50).

First, Eq. (5.50) is multiplied by X∗
p and X∗

p′
1
X∗

p′
2

respectively. Then, the
ensemble averaging over many statistically similar realizations is performed.
In the two equations obtained, the terms with cross terms containing the
non-ideal spectrum can be removed due to the zero-correlation assumption.
The exceptions are the auto-power spectra 〈βpβ

∗
p〉, 〈αpα

∗
p〉. As a result, the

following set of equations is obtained,53

〈YpX
∗
p 〉 = Lp〈βpβ

∗
p〉 +

∑
p1≥p2,

p=p1+p2

Qp1,p2
p 〈pp1Xp2X

∗
p 〉,

〈αpα
∗
p〉 = Lp〈XpY

∗
p 〉 +

∑
p1≥p2,

p=p1+p2

Qp1,p2
p 〈Xp1Xp2Y

∗
p 〉,

〈YpX
∗
p1
X∗

p2
〉 = Lp〈XpX

∗
p1
X∗

p2
〉

+
∑

p1≥p2,

p=p1+p2=p
′
1+p

′
2

Q
p
′
1,p

′
2

k 〈Xp
′
1
Xp

′
2
X∗

p1
X∗

p2
〉,

(5.51)
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An additional relationship is required to complete the set of
equations needed for the derivation of the four unknown variables,
Lp, Q

p1,p2
p , 〈βpβ

∗
p〉, 〈αpα

∗
p〉. The power spectrum is considered stationary

for fully developed turbulence:

〈βpβ
∗
p〉 = 〈αpα

∗
p〉 (5.52)

The fourth-order moment 〈Xp′
1
Xp′

2
Xp∗

1
Xp∗

2
〉 is either retained, or it is

substituted using the approximation
〈
Xp1Xp2X

′∗
p1
X

′∗
p2

〉
=

〈
|Xp1Xp2 |

2
〉

as
discussed above.

5.3.4. Amplitude correlation technique

The amplitude correlation is a spectral transfer analysis technique which
in many aspects complements the PTF method. The amplitude correlation
was first applied to the measurement of nonlinear interactions between drift
waves and low-frequency flute-like modes.55 The nonlinear interactions in
which two drift waves interact with the low-frequency flute-like mode were
identified as the mechanism responsible for the drift-wave saturation. Later,
the method was applied to study the ’frequency doubling’ interaction drift
waves. The justification of the method was given in reference.56

τ < >

Fig. 5.10. The flow chart of the amplitude correlation technique

The basic idea of the amplitude correlation is to obtain a new signal
from a fluctuation signal. This new signal represents the time-envelope of
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the original signal in a particular frequency band. This envelope signal can
then be cross-correlated with other envelope signals derived in a similar way.
The resulting maximum correlation between the two signals and the time
delay of the maximum correlation are indicative of the degree of coherent
coupling and of the energy flow direction between the two frequency bands.

The procedure is illustrated schematically in Fig. 5.10.. From the orig-
inal fluctuation signal x(t), two time series, x1(t) and x2(t), are obtained
by applying two band-pass filters F1 and F2 centered on frequencies f1
and f2 respectively to the signal. These two time series, x1(t) and x2(t),
are then squared and passed through a low-pass filter F3 to obtain the
slow varying amplitude components denoted as [x2

i (t)], i = 1, 2. Then the
cross-correlation function (CCF) between these signals is computed as

K(τ) =
〈[
x2

1(t)
][
x2

2(t+ τ)
]〉

(5.53)

where the angle brackets <> denote ensemble average.
If the original signals x1 and x2 contain frequencies ω1,2 ± ∆ω, the

squared signals would contain high-frequency bands centered around 2ω1,2

and a low-frequency band extending from zero to 2∆ω. It is this low-
frequency band that contains the amplitude information and the purpose
of the filter F3 is to remove the upper band. It also serves to remove the
mean values of x2

1,2.
K(τ) can be used for intuitive interpretations. For example, in a wave

propagation experiment using the amplitude correlation, applying identical
filters F1 and F2 to signals from probes separated in space, a direct measure-
ment of the group velocity of waves in the selected frequency band can be
obtained.56 One of the most important usages of the amplitude correlation
method is determination of the energy flow in a turbulent spectrum.

The direction of the energy flow from one frequency domain to the other
can be determined from the sign of the time delay (τlag) of the peak value
of the cross-correlation function K(τ). The two domains are defined by
the two bandpass filter F1 and F2. Positive time lag means the first signal
x1(t) leads the second signal x2(t) in phase. As a result, one can speculate
that the frequency domain around F1 (x1(t)) could be the energy source of
that of F2 (x2(t)). Similarly, a negative time lag τ suggests that the region
around x2(t) is the energy supplier for x1(t). The amplitude correlation
method can, in principle, help to estimate the growth/damping rate of the
driven mode and the nonlinear energy throughput rate.

In the applications of the amplitude correlation technique, the two fre-
quency bands under consideration do not necessarily need to come from the
same fluctuation signal. Nonlinear interaction between different fluctuation
fields can also be detected through this method.

An important issue in interpreting the time lag is that the time delay,
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τlag, is indicative of the energy flow between the two frequency bands only
when the two frequency bands are strongly correlated.

5.4. Experimental evidence of the inverse energy cascade
in plasma

In this section we illustrate how the above methods of the spectral transfer
analysis are applied to experimental data. The examples are based on the
results from the H-1 toroidal heliac.57,58

5.4.1. Applicability of the nonlinear spectral transfer model

The wave coupling equation, Eq. (5.29), describes turbulence in which a
single-field description is valid and the three-wave interactions are permit-
ted and dominant. A distinct feature of plasma as a continuous medium is
that the responses of the electrons and ions are not identical, hence they
induce collective electromagnetic fields. The dynamical equations for a
plasma in the fluid limit are usually constructed using a two-fluid picture.

A single-field description of the plasma turbulence needs to be justified
on a case-to-case basis. Consider the electrostatic wave turbulence, when
the magnetic field fluctuations can be neglected. In a stable drift wave,
electrons relax, along the magnetic field, to acquire Boltzmann distribution
in the wave potential:

ñe = n0 exp(eφ̃/T ). (5.54)

When the drift wave becomes unstable, the electron response is perturbed.
This perturbation is characterized by the so-called non-adiabatic electron
response, δne. If the normalized level of the potential fluctuations is small,
(eφ̃/T ) << 1, this can be written as

ñe = n0(eφ̃/T ) + δne. (5.55)

In the unstable wave δne �= 0 and the ne and φ fluctuations are out of
phase. This phase shift can be detected in experiment.

For a single-field description to be valid, the ne and φ fluctuations should
be in phase. A well-known example is the Hasegawa-Mima model (see Sec-
tion 1.4 of Chapter 4) where δne = 0. This also means that the fluctuation-
driven particle flux is zero. As follows from Equation (5.11),

Γfl = 2
B

∞∫
0

dω [PnnPEE ]1/2|γnE | cos [αnE ] = 0,

since ñe and Ẽθ have a π/2 phase shift (Ẽθ = −∇θφ̃) and cos (αnE) = 0.
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While confirming the phase difference between ñe and φ̃, it should be
kept in mind, that it is fluctuations in the plasma potential, rather than in
the floating potential which should be analyzed. In other words, fluctua-
tions in the electron temperature should be included (see Eq. (5.7)).

Fig. 5.11. (c) shows the phase shift between fluctuations φ̃p and φ̃f

obtained from the experimental data in H-1. The phase shift between the
two fluctuating quantities is close to zero in the broad spectral range from
f ≈ 0 to 60 kHz. For the spectral energy transfer analysis, the phase
information is much more important than the amplitude, since most of the
spectral quantities used in the analysis (e.g. auto- and cross-bicoherence)
are normalized.

In the given example from the H-1 heliac, φ̃f and φ̃p are in phase and
the analysis can be simplified: φ̃f is used in the PTF analysis.

∆
ϕ

/π

Fig. 5.11. Power spectra of (a) fluctuations in the plasma potential φ̃p, and (b) fluc-
tuations in the plasma floating potential φ̃f . (c) Spectra of the phase shift between φ̃p,

and φ̃f .

The phase difference between fluctuations in the poloidal electric field,
Ẽθ, and the density, ñe is shown in Fig. 5.12.. This phase shift is close to
π/2 over the most of the spectrum suggesting that the electron response
is adiabatic. Thus, the applicability of the single-field description in the
described experiments is justified.
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∆ϕ/π θ

Fig. 5.12. Spectrum of the phase shift between fluctuations in the electron density, ñe,
and poloidal electric field, Ẽθ.

Another point which should be made here is that in experiments, spectra
are measured in the frequency (f) domain, while the wave kinetic equation
is defined in the wave number (k) domain. The PTF analysis of experi-
mental data would only be valid if a linear k − f relationship is confirmed
experimentally. Below we illustrate how this can be done in experiment.

In the laboratory frame of reference, frequencies of the fluctuations are
Doppler shifted due to the presence of the E × B drift in practically all
toroidal plasmas: ωlab = ωplasma + kθVE×B. As explained in Section 2.5,
in most cases, E×B drift dominates over the phase velocity in the plasma
frame. Thus, the fluctuation frequencies in the lab frame are proportional
to the poloidal wave numbers of the fluctuations. Since in the broadband
turbulence the wave number spectra are isotropic, kθ ≈ kr,,3 one can as-
sume that k ≈

√
2kθ ∝ ω. The E × B Doppler shift plays in such cases a

role of the wave number spectrograph.

5.4.2. Results on the spectral transfer analysis

Figure 5.13. shows the power spectrum of the φ̃f fluctuations in the H-1
plasma.57 Spectral power decreases with frequency in the range f = (0−80)
kHz. In the frequency range of f < 20 kHz several coherent modes are
observed.

Before applying the power transfer analysis technique to the fluctuation
data, the linear k − f relationship needs to be tested, as discussed above.

Wave numbers of fluctuations are measured using two poloidally sepa-
rated probes, as kθ = ∆φ/∆y, where φ is the phase shift and ∆y is the
distance between the probes. This wave number kθ is shown as a function of
frequency, kθ(f), in Fig. 5.13. (b). Though the kθ(f) plot has large ripple,
a linear trend, represented using a black line, is clearly observed.

The fluctuation phase velocity in the poloidal direction, V = ωlab/kθ,
derived from this linear fit agrees within 10% with the measured E × B
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θ

Fig. 5.13. (a): Power spectrum of the fluctuations in the floating potentials, Ṽf , (b)
measured poloidal wave number spectrum kθ(f) (grey line) with the linear fit (black
line)

.

drift velocity in this radial region, confirming that kθVE×B >> ωplasma.
Thus, the spectral power transfer can be studied in the frequency do-

main. The three-wave interactions satisfying matching rules for the wave
numbers, k = k1 + k2, also obey the frequency selection rule, f = f1 + f2.

It should be noted, that while estimating the temporal evolution of the
turbulence spectra, one needs to take into account that turbulence drifts
in the lab frame. As discussed in Section 3.3, the change in the turbu-
lence spectrum is estimated using the differential approach represented by
Eq. (5.36). During the time interval, τ , turbulence will drift in poloidal
direction by ∆y = τVE×B. As a result, the turbulence evolution should be
studied using two probes separated poloidally. The time delay, τ , in the
Equation (5.36) should be estimated using the distance between the probes,
∆y, and VE×B.

The nonlinear energy transfer function (NETF), W k
NL, and the linear

growth rate, γk, derived from Eq. (5.42) in Section 5.3.3. are shown in
Fig. 5.14.. W k

NL is negative in the broadband spectral region of f =(20 −
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γ

a

b

Fig. 5.14. (a) The nonlinear energy transfer function Wk
NL; (b) linear growth rate γk

derived from Eq. (5.42). The frequency resolution is ∆f ≈ 4 kHz.

50) kHz suggesting that waves in this range on-average lose energy, whereas
the lower frequency spectral range (f <20 kHz) gains spectral energy due to
the three-wave interactions. The linear growth rate shown in Fig. 5.14. (c)
has positive maximum at f ≈ 25 kHz. This spectral range is the range
where initially unstable waves develop.

The NETF shown in Fig. 5.14. illustrates the inverse energy cascade in
the broadband turbulence. Its computation required substantial statistical
averaging. The turbulence signals digitized at the rate of 1 MHz during 80
ms of the plasma discharge are divided into 460 overlapping segments, such
that the spectral moments needed for the PTF computation are then aver-
aged over these segments. Such averaging is needed to correctly estimate
spectral transfer via the random-phase wave interactions.58

The inverse energy cascade is the mechanism of spreading spectral en-
ergy from the instability range into a broad range of the wave numbers and
frequencies. The PTF method50,53 has been successfully used to demon-
strate the existence of the inverse energy cascade in toroidal plasma.57,58

However, the NETF in Fig. 5.14.(a) does not show the fine structure, which
would correspond to coherent spectral features seen in the spectrum of
Fig. 5.13.(b). This may be suggestive of the non-cascade origin of these
features.
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5.5. Quasi-two-dimensional turbulence in fluids and plasma
and generation of zonal flows

The inverse energy cascade in 2D fluid turbulence42 is the flow of spectral
energy from smaller to larger scales, leading to the Ek ∝ k−5/3 scaling
of the energy spectrum in this spectral range (see Chapter 1, Section 4,
by G. Falkovich). R. Kraichnan has predicted that the spectral energy
may pile up at the largest scale allowed by the system size and noted a
similarity between the condensation of the turbulent energy and the Bose-
Einstein condensation of the 2D quantum gas.42 The condensate formation
in 2D fluids has been confirmed in experiments59,60 and in numerical simu-
lations,61,62 for review see.63 Below we illustrate how turbulence condenses
in the 2D fluid experiment.

In plasma, quasi-2D turbulence can also be generated via 3-wave inter-
actions.8 The structure of the Hasegawa-Mima equation, which describes
spectral evolution of the drift-wave turbulence, is identical to the Charney
equation describing the evolution of nonlinear Rossby waves in planetary
atmosphere.9,64 These models, similarly to the models of the 2D fluid tur-
bulence described by the 2D Navier-Stokes equation, have two conserved
quantities, energy and enstrophy. As a consequence, there are two inertial
ranges which correspond to (a) the inverse cascade of energy, and (b) for-
ward cascade of enstropy. Similarly to the fluid dynamics in 2D, spectral
energy in plasma can condense in the largest scale.9,65 In particular, such
condensation may lead to the formation of zonal flows and other coher-
ent structures which is a form of the plasma self-organization.66 We will
illustrate generation of zonal flow in plasma experiment and will discuss
experimental signatures of such flow.

5.5.1. Spectral condensation of 2D turbulence

One of the first convincing experimental evidence of the inverse energy
cascade in 2D turbulence was presented by J. Sommeria in 1987.59 In this
experiment, turbulence was generated in a thin layer of mercury in a cell.
The fluid was placed in the vertical magnetic field. 36 biased electrodes of
varying polarity generated electric currents in a layer which, by interacting
with the vertical magnetic field generated 36 planar vortices in a cell. By
varying the current and the depth of the mercury layer, the forcing and the
linear damping could be finely controlled. Sommeria observed the k−5/3

scaling due to the inverse cascade in the energy inertial range (though in
a rather narrow k-range) and also reported the observation of the largest
vortex limited by the cell size at low linear dissipation due to the process
of the spectral condensation.
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Detailed measurements of the spectral energy scaling were presented by
Paret and Tabeling60,67 in 1997-98 in experiments in the stratified layers
of electrolyte. In these experiments 2D turbulent flows were studied by
generating J ×B-driven vortices in thin layers of fluid. These experiments
have confirmed the existence of the inverse energy cascade in the quasi-2D
turbulence, the k−5/3 scaling, as predicted by Kraichnan,42 and also have
confirmed the generation of the spectral condensate at low damping.

The most recent experiment in which the spectral condensation of tur-
bulence was reproduced, has been aimed at the comparison between fluid
and plasma turbulence.68 Below we summarize some of these results.

Figure 5.15. shows experimental setup used in references60 and repro-
duced in.68 Turbulence is generated via the interaction between J × B-
driven vortices whose sizes and the distances between their centres (po-
sitions of the magnetic dipoles) determine the scale at which energy is
injected into the system. This scale is characterized by the wave number
ki. The flow on the free surface of the light fluid is visualized by placing
small latex particles on the surface and by recording their trajectories using
video camera. The particle image velocimetry (see Chapter 7 by J. Soria)
allows the velocity and the vorticity fields to be reconstructed from the
consecutive images of the particles in the flow.

After the current is turned on, and if the vortex interaction energy is
sufficiently high, the inverse energy cascade leads to the aggregation of
the spectral energy at larger and larger scales. The maximum of the energy
spectrum thus moves from ki toward the lower-k range of the wave numbers.
In the absence of the energy dissipation, a wave number corresponding to
the maximum spectral energy, km, can not be constant in time. However,
if there is damping for large scales, for example via linear damping µ, km

stabilizes at

km ≈
(
µ3

ε

)1/2

, (5.56)

where ε is the energy dissipation rate (see Chapter 1).
Another characteristic scale in 2D turbulence is determined by the size

of the system, ks, such as the size of the fluid cell. If the system size is
larger than the resistive scale, or, ks < km, one should observe the station-
ary spectrum which has a maximum at km. If however the resistive wave
number [Eq. (5.56)] is larger than the cell size, ks > km, spectral conden-
sation of turbulence becomes possible when spectral energy accumulates at
the system size. This is illustrated schematically in Fig. 5.16..

The evolution of the turbulent 2D flow in a cell is shown in Fig. 5.17. for
the case when the damping to the bottom of the fluid cell is reduced due
to the fluid stratification, such that the spectral condensation of turbulence
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Fig. 5.15. Schematic of the electromagnetically-driven 2D turbulence in electrolyte. A
thin layer of a light fluid (LF) rests on the layer of denser fluid (DF). A matrix of 10×10
magnetic dipoles (MD) is placed under the bottom of the fluid cell. Current J flowing
between two electrodes (E) generates 100 vortices due to the J ×B force, as illustrated
on the right.

is possible. Initially only externally forced vortices are seen [Fig. 5.17.(a)].
The inverse energy cascade destroys these vortices and leads to the gen-
eration of a broadband spectrum of eddies seen in Fig. 5.17.(b). At some
stage, a large vortex is formed, which then persists in steady-state as shown
in Fig. 5.17.(c).

The corresponding evolution of the wave number spectra, derived from
the velocity field of the trace particles, is illustrated in Fig. 5.18.. At the
early stage of the flow evolution, t = t1, spectrum shows a peak at the
forcing scale, k = ki. Later, at t = t2, this peak is washed out and the
maximum of the spectral energy shifts to lower k. Eventually spectral
energy is accumulated at ks which represents the scale of the large vortex
shown in Fig. 5.17.(c).

It should be noted, that the increase in spectral energy in the condensate
wave number range at t = t3 coincides with the reduction in spectral energy
in the broadband turbulence, including the forcing range ki.

After the formation of the largest vortex, the condensate persists in
steady-state. The energy necessary to overcome damping at this largest
scale can only come from the energy source at ki. The fact that spectral
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Fig. 5.16. Schematic of the 2D turbulence spectrum.

(a) (b) (c)

Fig. 5.17. Trajectories of the tracer particles averaged over 12 frames of recorded video
during spectral condensation of turbulence. (a) The initial stage, t = 3 seconds after
switching on the current; (b) the inverse energy cascade stage, t = 16 s; (c) steady-state

spectral condensate stage, t = 55 s.

energy in the spectral range ks < k is reduced in the presence of the conden-
sate may be indicative of the stronger spectral coupling between spectral
regions of ki and ks, such that the spectral energy is delivered from ki to
ks directly, rather than through a multi-step process of the energy cascade.

5.5.2. Zonal flows in plasma turbulence

In the above example we have seen that strong anisotropic flow may develop
as a result of accumulation of the turbulent energy of the 2D turbulence
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Fig. 5.18. Wave number spectra of the velocity field during the development of spectral
condensate in 2D fluid. t3 > t2 > t1.

at low wave numbers. Understanding physics of such an interplay between
stationary flows and turbulent fields is also important in plasma turbulence
studies (for review see69). In addition to flows driven by the momentum
input (or loss), turbulence-driven flows play important roles in the plasma
dynamics. A complex interplay between turbulence and flows in magneti-
cally confined plasma has been a focus of the turbulence related studies in
the last two decades. This topic is of great practical importance, due to its
relevance to such phenomena as improvement of the plasma confinement
and formation of the plasma barriers. We will only briefly discuss this topic
in these lectures.

First, it is important to clarify which flow is the most important in this
context, since in plasma, unlike in neutral fluids, a number of flows appear
(electron and ion diamagnetic drifts, E × B drift, etc.). Out of them, the
E × B flow has unique status in plasma physics and it also has a central
role in the plasma-flow interaction physics.

It has been shown theoretically70 in the equations governing electrosta-
tic turbulence, the only convective term in the equations is the E×B drift.
The E × B flow is the sole advectant of fluctuations in density, tempera-
ture, and flow. As explained in,69 this statement is a result of empirical
observations and careful theoretical calculations. It does not simply follow
from the fact that the E × B drift velocity is the same for all particles
regardless of their charge or mass, simply because this is not universally
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correct, for example in complex magnetic geometry. A good illustration
of the difference in the E × B flow and in the ion mass flow velocities is
given in.71 What is important for us here is the fact that it is the E × B
flow, rather than bulk plasma flow, which is relevant in the turbulence-flow
interaction.

In toroidal plasma the E×B flow is determined by the radial component
of the electric field. Radial electric field in the plasma can be estimated
using the radial force balance equation (related to the ion momentum bal-
ance). This equation can be expressed as69

Er =
1
qini

∂

∂r
pi +

mi

qi

∂

∂r
〈ũθiũri〉 − uθiBφ + uφiBθ, (5.57)

where qi is the ion charge, ni is the ion density, mi is the ion mass and
ui is the ion velocity. Subscripts θ and φ indicate poloidal and toroidal
components of the flow velocities and of the magnetic field. The second term
on the right-hand-side is the Reynolds stress. Reynolds stress in the fluid
turbulence is discussed by J. Jiménez in Chapter 6 (Section 3). Reynolds
stress in the plasma26 (for review see69) provides a mechanism of generating
stationary flows by turbulence.

Some of these flows have already been mentioned. These are zonal flows,
or poloidally and toroidally symmetric potential structures driven by the
plasma fluctuations. Reynolds stress is not the only theoretical mechanism
which can drive zonal flows (see Chapter 4, Lecture 3). Poloidal and toroidal
symmetry means that the poloidal and toroidal components of the wave
number are zero: kθ = kφ = 0, while their radial wave number, kr, remains
finite. Such a structure is shown schematically in Fig. 5.19.. Arrows indicate
the direction of the flow in poloidal plasma cross-section. Once again, the
flow here is the E×B flow, which does not coincide with the ion flow whose
velocity uθi appears in the radial force balance, Equation (5.57).

Theories of zonal flows in plasma are discussed in Lecture 3 by J. Krom-
mes (see Chapter 4). For detailed review on the theory of zonal flows see.10

Experimental studies of zonal flows are described in references.11–17 The
most recent collection of experimental results on zonal flows has been pub-
lished in the special issue of the Plasma Physics and Controlled Fusion
journal (Volume 48, Number 4, April 2006).

It is impossible to overview experimental results on the zonal flows in
toroidal plasma in this section, however, it seems appropriate to illustrate
how zonal flows are identified in experiments. Sometimes, geodesic acoustic
modes, or GAMs are also referred to as the higher frequency branch of zonal
flows (see Section 3.5 of Chapter 4). These modes appear in toroidal plasma,
and are observed as the finite-frequency coherent potential structures. They
will not be discussed here.
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Fig. 5.19. Schematic of the zonal flow in toroidal plasma.

First we discuss experimental evidence of the stationary (fZF = 0) zonal
flows. There are two theoretically expected mechanisms of the zonal flow
generation in plasma, which seem to be supported by observations. The
first one is the generation of zonal flow via the inverse energy cascade in
broadband turbulence of drift waves (see10). This mechanism is somewhat
similar, but not identical, to the inverse energy cascade in 2D fluid turbu-
lence described in the previous subsection. The second mechanism of the
zonal flow generation is modulational instability whose theory is described
in Section 3.1 of Chapter 4 by J. Krommes.

In the high-temperature plasma, the first observation of the stationary
zonal flow whose frequency was very close to zero, fZF ≈ 0, was reported
in the CHS torsatron15 by Fujisawa et al. Two heavy ion beam probe
diagnostics (see Section 2.7) were set at two toroidal locations, such that
the toroidal mode number n = 0 of the observed f ≈ 0 potential structure
could be confirmed experimentally.

Similar spectral feature has been also observed in the low-temperature
plasma in the H-1 heliac using Langmuir probes.72

Spectrally broadened low-frequency band around fZF = 0 has signa-
tures of zonal flow. Poloidal and toroidal mode numbers have been esti-
mated from poloidally (1 and 2) and toroidally separated (2 and 3 probes).
It is usually difficult to align toroidally separated probes to exactly the
same poloidal position. As a result, a phase shift between probes 1 and
3 will occur due to the uncertainty in the poloidal separation between the
probes, ∆y13:

∆ϕ13(f) = k‖(f)∆L‖ + kθ(f)∆y13, (5.58)
where ∆L‖ and y13 are toroidal and poloidal separation between probes 1
and 3 respectively, and k‖(f) is known from the phase difference between



September 20, 2006 13:20 World Scientific Review Volume - 9in x 6in master˙tts

Experimental Studies of Plasma Turbulence 273

P
V(

)
(a

.u
.)

f

#50950

1

10
-2

10
-4

10
-6

10
-8

1 f (kHz)10 1000.1

m =
n =

0
0

1

2

3

�

�

B

�L||

�y

(a)

(b)

Fig. 5.20. (a) Frequency spectrum of electrostatic potential. Shaded f < = 0.5 kHz
frequency band corresponds to m = n = 0 zonal flow. (b) Probe setup used for identifi-
cation of poloidal and toroidal mode numbers.

probes 1 and 2. In case of zonal flow, m = 0, and the second term on
the right-hand side becomes zero (since kθ = 0), such that the poloidal
uncertainty ∆y13 becomes unimportant and the toroidal wave number can
be reliably estimated by measuring ∆ϕ13.

Accumulation of spectral energy in the spectrally broadened zero-
frequency zonal flow illustrated in Fig. 5.20.(a) possibly occurs via the in-
verse energy cascade (see Section 4.2). It has been suggested in reference,68

that the processes of spectral condensation in 2D fluid turbulence (section
5.1) may be in several aspects similar to the generation of zonal flows in tur-
bulent plasma. Experimental data68 generally agree with the theoretically
proposed idea that the spectral energy is gradually accumulated in larger
scales by cascading from the unstable spectral range (injection scale in 2D
fluid), until the largest structure, or zonal flow develops. At this stage,
the spectral transfer may be changing from spectrally local (wave numbers
participating in the energy cascade are comparable) to non-local, such that
the energy can be delivered into zonal flow directly from the unstable range
scales kur >> kZF . Such a possibility has been proposed in73 and has been
reviewed in.66

Generation of zonal flow via the modulational instability (Chapter 4,
Section 3.1) is another possible scenario. The first experimental evidence of
the zonal flow development which is consistent with this has been reported
in.74 In this case, zonal flow develops in the improved confinement mode
(H-mode), in which the level of the broadband turbulence was substantially
reduced. The generation of zonal flow was correlated with the development
of the secondary instability in the plasma. This instability is driven by the
Er shear and is similar to the Kelvin-Helmholtz instability. Initially coher-
ent oscillations appear at f = 15 kHz. As the instability develops and the
fluctuation spectrum becomes broader, a low frequency Er spectral feature
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develops, as illustrated in Fig. 5.21.. Zonal flow is the spectral feature at
f ≈ 1 kHz seen in the wavelet plot of the Er fluctuations of Fig. 5.21.(a).
Corresponding 1 kHz feature in the fluctuations of Epol (Fig. 5.21.(b)) is
considerably weaker, since for zonal flows kr >> kθ ≈ 0. In this example,
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Fig. 5.21. Wavelet plots of the time evolution of the fluctuations in (a) radial and (b)
poloidal electric fields. For details see.74

zonal flow has low but finite frequency, as is expected from the theory of the
modulational instability (see paper by R. L. Dewar and R. F. Abdullatif,
in the Workshop Proceedings).

5.6. Conclusion

In this chapter we gave a brief introduction to modern methods and results
in experimental studies of turbulence in the plasma confined by toroidal
magnetic field. Considerable progress has been made due to novel sophis-
ticated diagnostics and analysis techniques, but also due to closer interac-
tion between plasma theory, numerical simulations and experiments. This
is particularly true with regard to studies of large turbulence-driven struc-
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tures in plasma, such as zonal flows, geodesic acoustic modes, streamers
etc. We have not even attempted to review all experimental results related
to these topics in two lectures.

Several fundamental questions however remain unresolved. Among
them is the role of turbulent fluxes in the net particle and energy transport.
Answers to this question remain controversial. Though it is common to be-
lieve that turbulence generates fluxes which can affect net fluxes, it is clear
that in some situations the role of turbulence is limited to the generation
of strongly sheared E × B flows in the plasma. In this case the improve-
ment in particle confinement may be achieved due to, for example particle
orbit squeezing. To some extent this agrees with recent theoretical ideas
about intimate interrelation between neoclassical and turbulent fluxes in
plasma.75

Understanding plasma turbulence can be greatly enhanced through in-
terdisciplinary comparative studies of plasma and fluid turbulence. In this
chapter we have illustrated one of the first attempts in this direction, which
we find appropriate for this cross-disciplinary collection of lectures on tur-
bulence.

The authors thank G. Conway for his valuable comments.
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