Separation of vacancy and interstitial depth profiles in proton- and boron-implanted silicon

P. Pellegrino a, P. Lévêque a, H. Kortegaard-Nielsen a, A. Hallén a, J. Wong-Leung b, C. Jagadish b, B.G. Svensson a,c,*

a Solid State Electronics, Royal Institute of Technology, P.O. Box E229, SE-164 40 Kista, Stockholm, Sweden
b Department of Electronics Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia
c Physics Department Physical Electronics, University of Oslo, P.B. 1048 Blindern, N-0316 Oslo, Norway

Abstract

A new experimental method of studying shifts between concentration-versus-depth profiles of vacancy-type and interstitial-type defects in ion-implanted silicon is demonstrated. The concept is based on deep level transient spectroscopy (DLTS) measurements utilizing the filling pulse variation technique. The vacancy profile, represented by the vacancy-oxygen center and the interstitial profile, represented by the substitutional carbon-interstitial carbon pair, are obtained at the same sample temperature by varying the duration of the filling pulse. Thus the two profiles can be recorded with a high relative depth resolution. Point defects have been introduced in low doped float zone n-type silicon by implantation with 6 MeV boron ions and 1.3 MeV protons at room temperature, using low doses. For each implantation condition the peak of the interstitial profile is shown to be displaced by ~ 0.5 µm towards larger depths compared to that of the vacancy profile. This shift is primarily attributed to the preferential forward momentum of recoiling Si atoms, in accordance with theoretical predictions. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Point defects; Silicon; Ion implantation; DLTS

1. Introduction

Ion implantation has been used as a doping technique in silicon device processing for more than 30 years [1] and continues to be a standard ‘front end’ process in the early 21st century. However, with increasing miniaturization of silicon integrated circuits, the demands on well-controlled dopant distributions (in three dimensions) become extremely severe and ion implantation may not remain the prime doping technique because of the inherent limitations associated with defect generation, post-implant annealing and dopant diffusion. On the other hand, few viable alternatives exist and consequently, this has stimulated a substantial activity to improve the ability in controlling implanted dopant distributions. It has been established that anomalous diffusion of B and P during post-implant annealing is due to the excess of point defects generated by the implantation
Hence, knowledge about the initial distributions of excess point defects is crucial in order to understand and model the enhanced dopant diffusion.

Because of a preferential momentum transfer from the impinging ions to the silicon atoms in the forward direction, a slight displacement between the vacancy (V) and Si self-interstitial (I) distributions is predicted [8]. Although some attempts have been made to observe this shift experimentally by comparing results from spreading resistance measurements on n-type and p-type samples [9], a true comparison between depth profiles of specific vacancy-type and interstitial-type defects is still lacking. In this work we have employed deep level transient spectroscopy (DLTS) to study the shift between the concentration versus depth profiles of the vacancy–oxygen center (VO) and the substitutional carbon–interstitial carbon pair (Cs, Ci) in n-type samples implanted with MeV protons or boron ions. Despite limited to low implantation doses, where isolated collision cascades prevail, DLTS is a powerful technique and one of the few where depth profiles of specific defects can be obtained [10].

2. Experimental

The samples used were cut from n-type (100) oriented float zone (Fz) silicon wafers doped with phosphorus and having a resistivity ranging from 65 to 75 Ω cm. According to Fourier transform Infrared absorption measurements, the concentrations of interstitial oxygen [Oi] and substitutional carbon [Ci] atoms were both $\sim 5 \times 10^{15}$ cm$^{-3}$ (brackets denote the concentration values).

Boron implantations were performed at room temperature (RT) with 6 MeV 11B ions using the 1.7 MV NEC Tandem implanter at the Australian National University. Proton implantations were undertaken at the Svedberg Laboratory in Uppsala. A 12 μm thick Al foil was placed at the surface of the wafers in order to have a mean projected range ~ 12 μm according to transport of ions in matter (TRIM) calculations [11]. The ion dose was kept low in both cases: 1×10^8 B cm$^{-2}$ and 1×10^{10} H cm$^{-2}$, with an average dose rate of 3×10^7 and 1×10^9 cm$^{-2}$ s$^{-1}$, respectively. Therefore, the resulting carrier compensation was below 10%.

After implantation the samples were chemically cleaned using a standard procedure, which included a final dip in diluted hydrofluoric acid [12]. Immediately after cleaning, the samples were transferred into a vacuum chamber (base pressure $\leq 2 \times 10^{-6}$ Torr), where Au Schottky barrier contacts (~100 nm) were prepared at RT (≤ 40 °C) by thermal evaporation. The DLTS setup used is a refined version of the system described in [13].

3. Results and discussion

A DLTS spectrum of a boron implanted sample is shown in Fig. 1, where three major levels appear at ~ 0.42, ~ 0.23 and ~ 0.17 eV below the conduction band edge (E_c). The two former ones are primarily ascribed to the single and double negative charge states of the divacancy (V$_2$) center [14–17], respectively, where the $E_c - 0.42$ eV level also contains some contribution from the overlapping signal of the vacancy–phosphorus (VP) center [16,18]. Two additional levels at $E_c - 0.32$ eV and $E_c - 0.45$ eV appear in the DLTS spectrum of the proton-implanted samples. They have been assigned to hydrogen-related defects [19].

![Fig. 1. DLTS spectrum from a n-type Fz Si sample implanted with 6 MeV B ions to a dose of 1×10^8 cm$^{-2}$. The rate window is (100 ms)$^{-1}$, corresponding to an emission rate of 69.3 s$^{-1}$ at peak maximum, and the width of the filling pulse is 50 ms.](image-url)
In the following, we will focus on the $E_{c} - 0.17$ eV peak. As demonstrated in Fig. 2, by monitoring its amplitude as a function of the filling pulse duration, two contributions are readily resolved. The one with a large capture cross-section ($\approx 9 \times 10^{-15}$ cm2) is assigned to the well-known VO-center (or the A-center) [20]. VO is formed through the capture of migrating monovacancies by O$_i$ atoms. For $[O_i] \sim 5 \times 10^{15}$ cm$^{-3}$, the average net diffusion length of V before trapping becomes of the order of 0.1 μm. Because of the low doses used and since O$_i$ is a main impurity with $[O_i] \gg [VO]$, the production of VO reflects the amount of vacancies escaping annihilation. In fact, VO can be considered as a primary defect and as a monitor of the formation of free vacancies. The level with a small apparent capture cross-section ($\approx 8 \times 10^{-18}$ cm2) is attributed to the C$_s$C$_i$ pair [21] which occurs due to trapping of mobile C$_i$’s by C$_s$ atoms. The C$_i$’s are generated by interaction between the implantation-induced I’s and the C$_s$ atoms, and can be regarded as a monitor of the free self-interstitials not recombining with vacancies. Although substantially less mobile than I and V, C$_i$ displays an appreciable mobility at RT with a diffusion constant of $\approx 1 \times 10^{-15}$ cm2 s$^{-1}$ at 300 K [22]. For $[C_i] \sim 5 \times 10^{15}$ cm$^{-3}$, the C$_s$C$_i$ pairs are formed during a time period of a few days after the implantation and the effective diffusion length of C$_i$ is of the order of 0.1 μm. The C$_s$C$_i$ pair is predominantly observed in oxygen lean samples, where the competing O$_i$-trap for the migrating C$_i$’s is suppressed, and it is one of the few well-characterized defects of interstitial type with energy levels in the upper half of the band gap. The C$_s$C$_i$ pair is thermally stable up to \approx200–250 °C (depending on the purity of the silicon material) [23] but exhibits bistability, i.e. it can exist in two different atomic configurations where the most stable one for the negative charge state gives rise to the $E_{c} - 0.17$ eV level [21].

Implantations performed with boron ions or protons result in a quite similar ratio $[VO]/[C_sC_i]$. As suggested by the results in Fig. 2, an almost ideal situation occurs for accurate comparison of concentration versus depth profiles between vacancy-type (VO) and interstitial-type (C$_s$C$_i$) defects. Only a variation of the filling pulse width is required to distinguish between the two defects. For instance, the sample temperature can be kept constant, excluding any shift in the depth scale caused by variation of the carrier compensation and the Debye length with temperature.

Figs. 3 and 4 compare the profiles of [VO] and [C$_s$C$_i$] in the case of proton and boron implantation, respectively. A substantial shift is resolved with [C$_s$C$_i$] as the deepest one. In the peak region the absolute shift is ≈ 0.5 μm, independently of the mass of the implanted ion. The VO profile is ob-

![Fig. 2](image-url)
obtained using a filling pulse width of 10 μs, while the CsCi profile is extracted from the difference between the total $E_c - 0.17$ eV profile (filling pulse width 50 ms) and the VO profile.

The shift is significantly larger than the diffusion lengths involved for V, I and Cs and is predominantly ascribed to the preferential momentum transfer in the forward direction to the recoiling silicon atoms. The CsCi profile is almost symmetric around the peak with only a small tail towards the surface. Quite interestingly, the magnitude of the shift revealed in the peak region is close to that deduced by taking the difference between the distributions of silicon recoils and vacancies obtained from TRIM (version 96.01) calculations [11]. However, the agreement may be fortuitous since this treatment of the TRIM data assumes negligible long distance migration of defects and perfect annihilation of the overlapping V’s and I’s. As illustrated by the VO profiles in Figs. 3 and 4, the recombination of V’s and I’s is not perfect and competing traps exist for the migrating V’s and I’s. On the other hand, only a few percent of the generated Frenkel pairs survive after implantation at RT and the annihilation process can be considered as quite efficient. In order to acquire more systematic data, further work is being pursued to explore a wider range of implant energies and ions.

4. Summary

In conclusion, based on DLTS measurements utilizing the filling pulse technique, a new concept of resolving shifts between vacancy (VO) and interstitial (CsCi) depth profiles in ion-implanted silicon is shown. The separation can be studied with a high degree of accuracy since the two profiles are recorded at the same sample temperature. Hence, any shift in the depth scale caused by variation of the carrier compensation and/or the Debye length with temperature can be excluded. In samples implanted with 6 MeV B ions or 1.3 MeV protons, a shift of ~0.5 μm is revealed in the peak region, which is predominantly attributed to the preferential forward momentum of recoiling Si atoms. The magnitude of the shift is consistent with that anticipated from TRIM simulations assuming efficient annihilation of overlapping V’s and I’s.

Acknowledgements

Financial support was kindly provided by the Swedish Research Council for Engineering Sciences (TFR), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) and the EU Commission, Contract No. ERBFMRXCT980208 (END-EASD–TMR network).

References