Heliac parameter study

D. A. Monticello, R. L. Dewar, a) H. P. Furth, and A. Reiman
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544

(Received 24 August 1983; accepted 19 January 1984)

Helical axis stellarators (he1iacs) with zero net current are found to possess very good stability properties. Helically symmetric or "straight" heliacs with bean-shaped cross sections have a first region of stability that reaches to (β) of 30% or more. Those with circular cross sections have a second region of stability to Mercier modes. In addition, the stability properties of these plasma configurations as functions of pressure profile, helical aspect ratio, and helical period length are also reported.

I. INTRODUCTION

The superposition of an I = 1 stellarator field on the tokamak-like field of a current-carrying toroidal conductor and a solenoid field produces nested helical flux surfaces of bean-shaped minor cross sections. The strongly helical curvature of the magnetic axis lends itself to the realization of a deep magnetic well, even in the large aspect ratio limit. 1,2 Thus these heliac configurations do not have to rely on toroidal curvature to provide a magnetic well, as do planar axis stellarators. We restrict ourselves here to the study of helically symmetric heliacs. These "straight" heliacs should give good quantitative agreement with toroidal heliacs when the toroidal curvature is large compared to the poloidal curvature (i.e., when the number of helical periods is much greater than one). Recent calculations indicate that our results hold for heliacs even with only two or three periods. 3 We have previously reported on the favorable finite beta stability of these configurations. 4 We here report on further studies of this configuration and on the stability of other helical axis configurations that do not have a well at zero beta. These have more nearly circular cross sections and can be produced with very simple coils. 5 The stability of these configurations is studied as functions of the pressure profile, helical aspect ratio, and helical period length. In Sec. II we describe the heliac equilibria and their parametrization. In Sec. III the stability of these equilibria is described, and Sec. IV contains a discussion of the magnetic axis shift as a function of beta.

II. EQUILIBRIA

A three-dimensional view of the helically symmetric magnetic surfaces that we will be calculating is shown in Fig. 1 in an r,φ,z coordinate system. All equilibrium quantities are assumed to be functions only of r and u, where

\[
u = \phi - hz, \tag{1}\]

with

\[h = 2\pi/L. \tag{2}\]

Here, L is the length in the z direction of the length of one helical period. With this assumed symmetry the magnetic field can be represented as

\[B = hu \times \nabla \psi + h\mu, \tag{3}\]

where

\[\mu = (z + hr\theta)/(1 + h^2 r^2). \tag{4}\]

The equilibrium equation \(J \times B = \nabla P\) then becomes

\[\nabla \cdot (K \nabla \psi) = -\frac{2k^2}{h} \frac{g}{g} - \frac{\partial g}{\partial \psi} - \frac{\partial p}{\partial \psi}, \tag{5}\]

where

\[K = h^2/(1 + h^2 r^2). \tag{6}\]

The equilibrium is determined by specifying the shape of the outer flux surface (where \(\partial p/\partial \psi = 0\)) in a z = constant plane. The parameterization is

\[x = \rho \cos \gamma + \bar{x}, \tag{7}\]

\[y = \rho \sin \gamma, \tag{8}\]

where

\[\gamma = B \sin(\pi - \theta), \tag{9}\]

\[\rho = a[1 - b \cos(\pi - \theta)]. \tag{10}\]

Shown in Fig. 2 is the z = constant cross section that we will use as our reference heliac. It has

\[a = 0.5, \quad b = 0.5, \quad \bar{x} = 0.2, \tag{11}\]

and values of \(B\) from 0.6 to 1.6. Figure 3 shows the cross

![FIG. 1. Typical helically symmetric magnetic surface for bean-shaped heliac in r,φ,z coordinate.](image-url)
section for two different values of the helical aspect ratio A. Here the parameters are

$$a = 0.5, \quad b = 0.5, \quad A = 2.8 \quad \text{and} \quad A = 3.6,$$

(12)

where

$$A = (a + \bar{x})/ab.$$

(13)

The pressure $p(\psi)$ is parameterized as $p = c\psi^\alpha$ and representative profiles are shown in Fig. 4. We note that the ratio of the area averaged pressure to the on-axis pressure is 0.4, 0.33, and 0.25 for α equal to 2, 3, and 4, respectively.

Finally, the function $g(\psi)$ is chosen to make the net toroidal (z direction) current through each flux surface vanish. This constraint implies that there is no ohmic heating current, and if the conductivity is constant on a flux surface, that the equilibria are true resistive equilibria.

A description of the flux coordinate equilibrium code FEQ2.5, that solves Eq. (5) subject to this constraint, is contained in Ref. 6. Figure 5 shows typical results from this code for the vacuum field transforms of the reference heliac case with $B = 1.6$ and 1.2. Figure 6 shows the transforms for $\langle B \rangle$ of approximately 20% for the same cases.

III. STABILITY

In this section we present the balloon and Mercier stability of the equilibria described above. The formulation for this calculation is contained in Ref. 6 along with a discussion of the global stability analysis, the results of which we also briefly mention. We recall here that the balloon stability is both a necessary and sufficient condition for stability for modes with large toroidal mode number n. Past results have indicated that stability for low n modes is assured if balloon stability is obtained, especially if the modes are pressure driven, i.e., with no ohmic current as in the present case. On the other hand, Mercier stability is a necessary condition for
stability for any toroidal mode number n and poloidal mode number m such that $n/m = e$, where e is the rotational transform in the plasma.

Figure 7 is the stability diagram for the reference case. There are three regimes indicated in Fig. 7. A stable region that exists for large B, a region where both balloon and Mercier criterion give instability, and a region where just the balloon criterion gives instability. At low β the $V'' < 0$ condition for stability is seen to be consistent with the balloon and Mercier criteria as it should be. A characteristic of the equilibria described here is that when $V'' = 0$ vanishes at the origin, it is approximately zero over the whole cross section of the plasma. Figure 7 shows cases when $\langle \beta \rangle < 30\%$ for $B = 1.6$ that are stable. Here $\langle \beta \rangle$ is defined relative to the vacuum field on axis. These have on-axis beta values (relative to local B) of approximately 200% because of the diamagnetic effect of the plasma. This is very desirable from the point of view of advanced fuel cycles and also would mean improved transport properties because of μ (magnetic moment) conservation. Some of these very high-β cases have been checked for global stability and no low-n modes were found (n is the helical mode number). Results similar to this have been reported by others. The boundary at high β for the Mercier criterion may be viewed as a second region of stability. This is due to the fact that the critical n is typically ≥ 20 for the region where the system is just ballooning unstable, whereas inside the region where the Mercier criterion is violated low-n modes are found to be very unstable. This second region of stability to the Mercier criterion has been reported elsewhere. However, the region of balloon instability and Mercier stability was not included in Ref. 8. Figures 8 and 9 show the flux and current contours for a near circular plasma in this second region of stability to the Mercier criterion.

Also illustrated in the stability diagram is the ad hoc}

FIG. 7. Stability diagram for reference heliac case. The balloon β limit and A.H. equilibrium β limit curves are shown. Equilibria to the right of either curve violate the respective β limit. In addition a region of equilibria unstable to both the balloon and the Mercier stability criterion is indicated.
equilibrium limit. This is a limit that is violated when the magnetic axis is half way between the wall and the zero beta magnetic axis position (see Sec. IV). Figure 7 shows that this limit is also favorably affected by having a more "beany" shape to the outer flux surface.

Next, Fig. 10 illustrates the effect of peaking the pressure profile. The V'' boundary is of course unaffected. There is also very little effect on the balloon boundary, but the Mercier boundary is improved by peaking the pressure profile. The ad hoc equilibrium-β limit is decreased as might be expected.

Figure 11 shows the effect of decreasing the length of a helical period, which is favorable for the near circular plasma, but generally has a deleterious effect on the bean-shaped plasma.

Finally, Fig. 12 shows the favorable effect of large aspect ratio (except on the equilibrium limit).

IV. DISCUSSION OF EQUILIBRIUM LIMIT

In planar axis stellarators the equilibrium beta limit is believed to be due to the symmetry breaking nature of the Shafranov shift, which presumably leads to destruction of the flux surfaces. It is not known at what value of the shift the flux surfaces will be destroyed. The convention is to take the equilibrium beta limit to be that value of beta at which the magnetic axis shifts half way out to the outer flux surface.

This rough estimate gives a basis for comparison of different planar axis stellarator configurations.

For the helical equilibria considered in this paper, the axis shift is purely helical and does not break the symmetry. There is, in principal, no equilibrium beta limit. In practice, however, a large helical shift will couple with the symmetry breaking corrections to the equilibrium (such as the toroidal shift, the field ripple on axis, etc.). The resulting resonant perturbations are again expected to destroy the flux surfaces.

As a convenient measure of this effect, we have adopted the convention that the ad hoc equilibrium limit corresponds to the β value at which the axis shifts half way to the wall.

For nearly circular flux surfaces, the magnetic axis shift at low β is approximately given by β.

FIG. 10. Stability diagram for heliac showing effect of peaking the pressure (dotted curve). The solid curves are for those parameters of the reference case (see Fig. 7). The dotted curves are for $A = 2.8$, $\alpha = 3.0$, and $h = 0.8$.

FIG. 11. Stability diagram for heliac showing effect of decreasing the length of a helical period (dotted curve). The solid curves are for those parameters of the reference case (see Fig. 7). The dotted curves are for $A = 2.8$, $\alpha = 2.0$, and $h = 1.6$.

FIG. 12. Stability diagram for heliac showing effect of increasing helical aspect ratio (dotted curve). The solid curves are for those parameters of the reference case (see Fig. 7). The dotted curves are for $A = 3.6$, $\alpha = 2.0$, and $h = 0.8$.

FIG. 13. Axis shift as a function of β for several different sets of parameters. Here δ is the axis shift relative to r_p, and r_o is the radius of the magnetic axis. The solid line is the prediction of Eq. (15). The parameters considered are: $x = \alpha = 2.0, h = 0.8, A = 2.8, B = 1.0$; $\Delta = \alpha = 3.0, h = 0.8, A = 2.8, B = 1.0$; $\bullet = \alpha = 2.0, h = 0.8, A = 3.6, B = 1.0$; $\square = \alpha = 2.0, h = 1.6, A = 2.8, B = 1.0$; $\bigcirc = \alpha = 2.0, h = 0.8, A = 2.8, B = 1.2$.
\[\Delta R / r_p \approx (\beta) A / \epsilon_h \]

where \(\epsilon_h \), the transform in the helical reference frame, is

\[\epsilon_h = 1 - \epsilon, \]

with \(\epsilon \) the rotational transform per period. In Fig. 13 we have plotted the axis shift as a function of the right-hand side of Eq. (14) for some of our equilibria. We see that Eq. (14) gives a reasonable approximation to the axis shifts for \(B = 1.0 \), even though the flux surfaces are far from circular. The axis shifts are smaller for \(B = 1.2 \). The linear dependence of the axis shifts on \(\beta \) shows that the low-\(\beta \) expansion used to derive Eq. (14) retains its validity even at relatively large values of the shift.

V. CONCLUSION

We have shown that the stability to Mercier and ballooning modes is very dependent on the shape of the outer flux surface and, as might be expected, this is connected closely with the existence of a well \(|V^*| < 0 \) at zero beta. The bean-shaped heliacs have ideal stability limits that are quite high and which increase with large aspect ratio and long helical period length. On the other hand, the more circular cross-sectional heliac is troubled at low \(\beta \) with low-\(n \) instability, but has a second region of stability to these modes that is optimized by large helical aspect ratio, highly peaked pressure, and small helical period length.

ACKNOWLEDGMENT

This work was supported by U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073.