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Rich physics emerges as the result of interplay between discrete and continuous quantum states.
Fano resonances, absorption spectra crossing continuously ionization thresholds, scattering phase
variation determined by the number of bound states are just a few examples. A process of re-
construction of attosecond beating by interference of two-photon transitions (RABBITT) reveals
a similar phenomenon. In RABBITT, primary XUV driven ionization is aided by secondary IR
photon absorption or emission. The latter processes involve transitions between continuous states.
We demonstrate that when RABBITT crosses the ionization threshold and proceeds via a discrete
bound state, its phase makes a sudden jump which can be related to the phase of the continuous
transitions above the threshold. Up to now, this phase remained undetermined experimentally and
could only be estimated from simplistic theoretical models. The under-threshold RABBITT allows
to measure it directly and thus to provide the most complete characterization of ionization dynamics
on the attosecond time scale.

PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz

The interplay of discrete quantum states with their
continuous counterparts results in a rich plethora of phys-
ical phenomena. Discrete states fall into continuum
to form Beutler-Fano resonances which are ubiquitous
in ionization [1], scattering [2], and wave propagation
[3, 4]. Discrete and continuous parts of absorption spec-
tra merge continuously across the ionization threshold
[5]. Finally, the number of discrete states bound by a po-
tential determines the scattering phases all the way from
threshold to infinite energy [6, 7]. Attosecond electron
dynamics driven by intense and ultra-short laser pulses
presents another example when crossing threshold be-
tween the discrete and continuous parts of the spectrum
results in a new physical phenomenon. In the present
work we consider the process of reconstruction of at-
tosecond beating by interference of two-photon transi-
tions (RABBITT). In RABBITT, primary XUV driven
ionization is aided by secondary IR photon absorption
or emission. The latter processes involve transitions be-
tween continuous states which impart their phases into
the net phase of the attosecond beating. We demonstrate
that when RABBITT crosses the ionization threshold,
its phase makes a sudden jump which can be related to
the phase of the continuous transitions above the thresh-
old. Up to now, this phase remained undetermined ex-
perimentally and could only be estimated from simplistic
theoretical models. The under-threshold RABBITT al-
lows to measure it directly and thus to provide the most
complete characterization of ionization dynamics on the
attosecond time scale.

Since their conception, two-photon interferometric
techniques such as attosecond streaking (AS) [8] and
RABBITT [9–11] have become indispensable tools of at-
tosecond chronoscopy of atoms [12], molecules [13, 14]
and condensed matter [15]. Both techniques exploit in-
terference of various two-photon XUV/IR ionization pro-
cesses and thus get access to their phases. Those phases
are then converted to the timing information which al-
lows to resolve photoioemission on the attosecond time
scale.

In a typical RABBITT measurement, an ionizing XUV
attosecond pulse train (APT) is superimposed on an at-
tenuated and variably delayed replica of the driving IR

pulse. The photoelectron spectrum produced in such an
ionization process contains odd order harmonic (H) peaks
and even order side bands (SB). The SB’s oscillate with
twice the driving laser frequency ω when the IR pulse
delay τ relative to XUV APT varies:

S2q(τ) = α+ β cos(2ωτ + ΦR) (1)

ΦR = ∆φ2q±1 + ∆φW + ∆φcc .

Here α and β are constants which depend on the specific
experimental conditions. The RABBITT phase ΦR is the
sum of the phase difference between the neighboring odd
harmonics (∆φ2q±1 = φ2q+1 − φ2q−1), the analogous dif-
ference of the Wigner phases (∆φW) and the difference of
the continuum-continuum (CC) phases (∆φcc). The lat-
ter phase differences are converted to the corresponding
time delays by a finite difference formula

τW = ∆φW/(2ω) , τcc = ∆φcc/(2ω) . (2)

The two time delays in Eq. (2), summarily known as the
atomic time delay τa = τW + τcc, describe the group
delay of the photoelectron wave packet propagating in
the combined field of the ion remainder and the dressing
IR field relative to the free space propagation.

The contribution of the harmonic phase to a RAB-
BITT measurement (atto-chirp) can be eliminated by a
relative measurement on two atomic levels [11, 16, 17]
or two spin-split components of the same level [18] pho-
toionized by identical harmonics. Similarly, a RABBITT
measurement may involve two atomic species [19–21] or
alternate directions of photoelectron emission [22–24].
However, there is no direct experimental access to the
continuum-continuum phase φcc which is evaluated the-
oretically from a simplified hydrogenic model [25]. Only
in this way can the Wigner phase and the correspond-
ing Wigner delay be accessed. Very recently, a combined
ω/2ω RABBITT measurement was proposed to extract
τcc [26] and some limited information on δτcc between
various photoionization channels has been extracted ex-
perimentally [27].

In the present work, we consider the under-threshold
or uRABBITT process which contains a different split
of the RABBITT phase and thus allows to access τCC
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FIG. 1: (Color online) a) Schematic representation of the con-
ventional RABBITT process (adapted from [25]). b) Same for
the uRABBITT process. c) Simulated photoelectron spec-
trum of Ne at 800 nm overlapped with the corresponding
XUV spectrum of the driving APT. Harmonics H15 and H17
are perfectly matched with the corresponding peaks of the
photoelectron spectrum while H13 is found below threshold
where it overlaps with the 2p53d energy level. The spectral
width (FWHM) of H13 and its detuning ∆ relative to E3d

are shown with arrows. The SB16 (RABBITT) and SB14
(uRABBIT) are scaled up for better visibility.

experimentally. The uRABBITT process is illustrated
graphically in Fig. 1b in comparison with its conven-
tional counterpart shown in Fig. 1a. In the conventional
RABBITT, the XUV photon Ω = (2q ± 1)ω absorbed
from the initial bound state Ei is augmented by an IR
photon ∓ω leading to formation of the SB of the order 2q.
In the uRABBITT process, the (2q−1)ω photon absorp-
tion promotes the target electron to a discrete excited
state below the threshold En < 0. It is the subsequent
ω photon absorption that takes the photoelectron to the
continuum where it interferes with its downward shifted
counterpart which does undergo a CC transition. While
the conventional RABBITT phase contains the CC com-
ponent twice, the uRABBIT phase contains only one CC
component. In this respect, it is similar to AS in which
the direct XUV ionization does not contain the CC phase
whereas the IR aided process contains it only once.

The uRABBITT process has been demonstrated in He
[28] and more recently in Ne [29], both atoms driven at

800 nm with a slight detuning in the case of He. The Ne
case is illustrated in Fig. 1c where the harmonic H13 falls
below the ionization threshold at Ip = 21.56 eV whereas
SB14 emerges just above it. Absorption of an XUV pho-
ton from the harmonic H13 leads to the population of
the excited 2p53d and 2p54s states with comparable os-
cillator strengths [30]. However, the IR absorption from
3d is much stronger than that from 4s and the latter
state can be ignored in the uRABBITT process. The
next SB16 is formed by the conventional RABBITT as
both the adjacent H15 and H17 are placed well in the
continuum. Thus by comparing the phase of the SB14
and SB16 oscillations as functions of the XUV/IR delay
and the photoelectron emission direction we can eluci-
date the key distinctions between the conventional and
uRABBITT processes.

Our RABBITT simulations are based on a numeri-
cal solution of the time-dependent Schrödinger equation
(TDSE) in the single-active electron (SAE) approxima-
tion [31]. This approximation is valid in the photon en-
ergy range considered here which is well below the 3s
threshold. The TDSE is driven by a superposition of the
XUV APT and the IR pulses in several fixed increments
of IR/XUV delay τ . The photoelectron spectrum is ob-
tained by projecting the time-dependent wave function at
the end of the evolution on the basis of Volkov states. Nu-
merical details are given in the preceding works [32, 33].
All the numerical parameters are the same except the
number of pulselets in the ATP. It is increased from 11
to 21 thus decreasing the FWHM from 0.4 to 0.2 eV.

The photoelectron peaks corresponding to SB14 and
16 (shaded in orange in Fig. 1c) are fitted with Gaussian
profiles and their magnitude is analyzed using Eq. (1) as
the function of the delay τ . Results of this analysis are
displayed in Fig. 2 for He (left) and Ne (right). The top
row of panels in Fig. 2 displays the RABBITT phases of
SB16 and SB18 in He (a) and SB14 and SB16 in Ne (b).
These phases are plotted versus the common axis of the
photoelectron energy E2q = 2qω − Ip adjusted for each
SB2q. The data points are obtained by varying the cen-
tral frequency of the IR pulse from 1.53 to 1.70 eV. The
bottom row of Fig. 2 visualizes the position of the preced-
ing harmonic peak E2q−1 = (2q−1)ω−Ip which becomes
negative at the onset of the uRABBITT regime. In the
bottom panels, the energy levels are marked indicating
positions of the 1snp states in He (c) and 2p5nd states
in Ar (d). At ω ' 1.55 eV, the H15 harmonic overlaps
with the 1s3p level in He and the H17 harmonic crosess
the 2p53d level in Ne. Close to this IR photon energy,
the RABBITT phase makes a sudden jump by approxi-
mately −π/2. When an increment of 2π is added to the
raw data points above 1.55 eV, they merge smoothly with
the remaining data making a nearly continuous phase
transition from the RABBITT to uRABBITT regime as
the photon energy and the corresponding photoelectron
energy decrease.
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FIG. 2: Top row: the RABBITT phases of SB16 and SB18 in He (a) and SB14 and SB16 in Ne (b) are plotted as functions of
the corresponding photoelectron energy E2q = 2qω − Ip. The data points are obtained by sweeping the central IR frequency
ω across the range 1.53 − 1.70 eV. The solid line extrapolates the RABBITT phase towards the threshold. Experimental data
for He from [28] are exhibited with orange open circles. The black open circles for Ne display predictions of Eq. (9). Bottom
row: The photoelectron energy corresponding to the preceding harmonic peak E2q−1 = (2q − 1)ω − Ip. Onset of uRABBITT
corresponds to E2q−1 < 0. The horizontal lines mark the energies of the bound states: 1snp in He (c) and 2p5nd in Ne (d).
The width of the line visualizes the corresponding oscillator strength for the discrete transitions from the ground state. Higher
Rydberg states converging towards the threshold have much smaller oscillator strengths and are not shown.

Yet another clear distinction between the RABBITT
and uRABBITT regimes is displayed in Fig. 3. Here the
RABBITT phases of SB14 and 16 are plotted versus the
photoelectron emission angle. The polarization direction
serves as the common reference and the angular variation
of the phase relative to this direction is plotted. The
SB14 shows a clear evolution of its angular dependence.
At ω = 1.55 eV (uRABBITT regime), this phase drops
down sharply by nearly one unit of π at the emission
angles exceeding θ ' 40◦. At higher photon energies
ω = 1.6 and 1.65 eV this angular dependence becomes
smooth and approaches gradually that of SB16 whose
angular variation shows little change with the photon
frequency in this range.

The cross-over between RABBITT and uRABBITT
regimes exhibited in Figs. (2) and (3) can be under-
stood qualitatively using the lowest order perturbation
theory (LOPT) with respect to the photon-atom inter-
action [25, 34]. In the LOPT, the amplitude of the two-
photon ionization process is written as

M(k, i+ Ω) ∝ 1

i

{∑
Eν<0

+

∫ ∞
0

dκ2

}
(−i)LeiηLYLM (k̂)

×
[
〈kL‖r‖Enλ〉〈Enλ‖r‖i〉
Ei + Ω− En − iγ

+
〈kL‖r‖κλ〉〈κλ‖r‖i〉
Ei + Ω− κ2/2− iγ

]
(3)

Here 〈kL| and 〈κλ| are final and intermediate states de-
fined by their linear and angular momenta. The reduced
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FIG. 3: (Color online) Angular variation of the RABBITT
phase for SB14 and 16 relative to the polarization direction
θ = 0 at various photon energies. The angular position of the
kinematic node in the f partial wave is marked.

dipole matrix elements 〈‖r‖〉 in the above expression are
made real by stripping them of the exponential phases
and angular dependence. For the conventional RAB-
BITT, the sum over discrete intermediate states is ne-
glected in Eq. (3) as the corresponding energy denomina-
tors are large. Accordingly, the phase of the two-photon
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amplitude becomes

argM2q±1(k, κ) = φ2q∓1 + ηλ(κ) + φcc(k, κ) (4)

+π − πλ/2 +
{

arg
[
Ylimi(k̂)

]
= 0 , k̂ ‖ ẑ

}
Here φ2q∓1 is the harmonics phase for emission (+) or ab-
sorption (−) of an IR photon, ηλ(κ) is the XUV photoion-
ization (Wigner) phase and φcc(k, κ) is the CC phase.
The last term in the RHS of (4) vanishes in the polariza-
tion direction. For uRABBITT, conversely, the integral
can be neglected and the phase of amplitude (4) becomes

argM2q−1(n, k) = φ2q−1 + ηL(k)− π(L+ 1)/2 + φn

φn = arg(E2q−1 − En − iΓ)−1 = arctan(Γ/∆) (5)

Here we isolated a single term in the sum over the discrete
intermediate states which resonates with the uRABBITT
harmonic H2q−1 because of a small detuning ∆ = E2q−1−
En. We also substituted the infinitesimal γ with a finite
Γ. The latter is proportional to the spectral width of the
XUV field [40].

The corresponding RABBITT and uRABBITT phases
are calculated as arg

[
M∗2q−1M2q+1

]
. In RABBITT,

ΦR = ∆φ2q±1 + ηλ(κ>)− ηλ(κ<) (6)

+φcc(k, κ>)− φcc(k, κ<) ≡ ∆φ2q±1 + 2ω[τW (k) + τcc(k)]

Here the linear momenta in the final k and intermedi-
ate κ<, κ> states are related by the energy conservation
κ2>/2 − k2/2 = k2/2 − κ2</2 = ω. The corresponding
phase differences are converted to the time delays using
the finite difference formula (2). Analogously,

ΦuR = ∆φ2q′±1 + ηλ(p>)− ηL(p) + φcc(p, p>) + φL,λ

≈ ∆φ2q′±1 + ω[τW(p) + τcc(p)] + φLλ + φn (7)

Here φLλ = π(L−λ+1)/2 is the kinematic phase factor.
Transition to the second line in Eq. (7) exploits the near-
threshold scattering phase property ηL(p) ≈ σL(p) ≈
σλ(p). The latter bare Coulomb phase is divergent near
threshold independently of L [35]

σL(k) ' η
[
ln
√

(L+ 1)2 + η2 − 1
]
→ η ln |η| ∀L . (8)

Here |η| = 1/k →∞ near the threshold. We also used an
alternative definition of the CC phase in AS [25] τcc(p) ≈
φcc(p, p>)/ω . This leads to the following expression for
the uRABBITT/RABBITT phase difference:

ΦuR − ΦR = ∆φ2q′±1 −∆φ2q±1 + ω[τW(p) + τcc(p)]

−2ω[τW(k) + τcc(k)] + φLλ + φn

≈ −ω[τW (p) + τcc(p)] + π + φn . (9)

When deriving Eq. (9), we made the following simplifica-
tions. In our simulations, ∆φ2q±1 = π and the harmonic
phase difference in RABBITT and uRABBITT cancels.
Another simplification made in Eq. (9) exploits the fact
that the Wigner and CC phases add up to a constant near
the threshold. This is clearly seen in the top row of panels
in Fig. 3 where the RABBITT phase remains flat before
making cross-over to the uRABBITT regime. Therefore,
τW(k) + τcc(k) ≈ τW(p) + τcc(p) and the corresponding

terms in the RABBITT and uRABBITT phases cancel.
Finally, the orbital momentum factor φLλ is evaluated
under assumption of the Fano propensity rule for the
dipole transition L− λ = 1 [24, 36]. It is this propensity
rule that enhances strongly the f partial wave in the fi-
nal continuum. This explains a sharp drop of the uRAB-
BITT phase near a kinematic node of Y30 in Eq. (3). Pre-
dictions of Eq. (9) are marked in Fig. 2b and are found
in good agreement with non-perturbative TDSE calcula-
tions. The experimental data of [28] are overplotted in
Fig. 2a. We clearly see that this measurement covers
only a small part of the RABBITT phase transition and
corresponds to the resonant term φn in Eq. (9).

In summary, we studied systematically the RABBITT
phase variation near the ionization threshold in He and
Ne at 800 nm. When one of the harmonics (H15 in He
and H13 in Ne) crosses the ionization threshold, the next
upward sideband (SB16 in He and SB14 in Ne) is formed
by interference of the continuous transition with a dis-
crete one from the resonant bound state (1s3p in He
and 2p53d in Ne). This corresponds to the cross-over
to the uRABBITT regime and a π jump of the RABBIT
phase. An additional smooth variation of the uRAB-
BIT phase is related to the resonant phase of the two-
photon matrix element dependent on the detuning rela-
tive to corresponding bound state. This resonant phase
has been modeled theoretically [37, 38] and measured in
[28]. Above the threshold, the RABBITT phase remains
a smooth function of the photoelectron energy and can
be extrapolated to the limit E → 0 where the atomic
time delay remains small τa(E → 0) ' −40 as in He
and -35 as in Ne (the slope of the solid line in Fig. 2a
and Fig. 2b, respectively). At the same time, both
constituents of the atomic time delay τW and τcc are
divergent near threshold and a simple extrapolation of
τcc(E → 0) from hydrogenic values [25] at finite E is not
valid. Because τW(E → 0) is known analytically from
Eq. (8) and τa(E → 0) is small, the second constituent
of the atomic time delay τcc(E → 0) can be established
accurately. In particular, τcc = −56 ± 0.2 fs for SB14 in
Ne (E = 0.14 eV) [41]. The compensation of the Wigner
and CC phases and corresponding time delays near the
threshold has already been noted in a THz AS experi-
ment [39]. The spectral width of our APT allowed us
to study the passage of the uRABBITT harmonic over
a well isolated bound state (1s3p in He and 2553d in
Ne). An improved APT spectral resolution would facil-
itate probing more narrowly spaced energy levels thus
making uRABBITT a sensitive probe of the bound state
structure of the target atom. This development is cur-
rently underway [29].
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[34] V. Véniard, R. Täıeb, and A. Maquet, Phase dependence
of (n + 1)-color (n > 1) ir-uv photoionization of atoms
with higher harmonics, Phys. Rev. A 54, 721 (1996).

[35] J. C. A. Barata, L. F. Canto, and M. S. Hussein, New
asymptotic formulae for the point Coulomb phase shift,
Brazilian J. Phys. 41, 50 (2011).

[36] U. Fano, Propensity rules: An analytical approach, Phys.
Rev. A 32, 617 (1985).
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A. Resonant phase for a finite spectral width

We conduct the time integration in the matrix element of two-photon ionization with

monochromatic XUV Ω and IR ω fields

D(2)(Ω, ω) ∝
∞∫

−∞

dt1e
it1(Ω+Ei−En)

∞∫
t1

dt2e
it2(ω+En−E)

We change variables t1 = t2 + t1 − t2 ≡ t2 + τ where τ ≤ 0 and transform the integral:

D(2)(Ω, ω) ∝
∞∫

−∞

dt2e
it2(Ω+Ei−6En+ω+6En−E)

0∫
−∞

dτeiτ(Ω+Ei−En)

∝ 1

Ω + Ei − En − iδ
× δ(Ω + ω + Ei − E)

We added an infinitesimal δ > 0 to the energy denominator to make sure the integral

converges at τ → −∞.

With a decaying XUV field exp(iΩt) exp(−Γt) the energy denominator becomes

1

Ω + Ei − En − iΓ
≡ 1

∆− iΓ
=

∆ + iΓ

∆2 + Γ2
, where ∆ ≡ Ω + Ei − En is detuning

The resonant phase shift

φr = arg
[
D(2)(Ω, ω)

]
= arctan

Γ

∆

With a Gaussian envelope exp(iΩt) exp(−at2), the τ integration leads to

0∫
−∞

dτe−i∆τe−aτ
2

=

∞∫
0

dτe−aτ
2

cos ∆τ − i
∞∫

0

dτe−aτ
2

sin ∆τ ≡ C − iS , φr = arctan
S

C

According to Gradshteyn and Ryzhik [1] Eq. 3.896, p. 480

C =

∞∫
0

e−ax
2

cos bx dx =
1

2

√
π

a
exp

(
− b

2

4a

)
, S =

∞∫
0

e−ax
2

sin bx dx =
b

2a

∞∑
k=1

1

(2k − 1)!!

(
− b

2

2a

)k−1
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For a small de-tuning ∆/a ≡ b/a� 1 and

C =
1

2

√
π

a
, S =

b

2a
, φr =

S

C
= arctan

[
b

2a
2

√
a

π

]
= arctan

b√
πa

= arctan
1√
π

∆

Γ

Here the spectral width Γ =
√
a.

More eleborate expressions for the resonant two-photon absorption phase are derived in [2, 3]

B. Wigner time delay uncertainty at the threshold

The bare Coulmp phase approximation may be too crude. So we evaluate the elastic scat-

tering phases numerically using the atom computer code [4]. These phases produce the

time delays that vary slightly in different photoemission channels as shown in Fig. S1 . This

difference provides an error estimate of the Wigner time delay.

FIG. S1 : Wigner time delay in various photoionization channels of Ne extrapolated to the mo-

mentum κ0 = 0.1 eV (the photoelectron energy E0 = 0.14 eV) corresponding to the 3d resonance

in Ne.
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