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We present a theoretical interpretation of attosecond time-delays in double photoionization (DPI)
measured in XUV-pump and IR-probe experiments using coincidence detection. The so-called
Wigner time delay is extended to DPI and serves as a guide to better understand the observ-
able time-delay in the two-color case. By employing diagrammatic perturbation theory, we derive
explicit corrections to the time delays in DPI due to many-electron correlations and due to the effect
of the probing IR field. The present theory can be applied to closed-shell atomic targets like noble
gas atoms. We give specific numerical estimates for the time delay in DPI of the outer np6 shell
of Xe and make a comparison with a recent experimental data [Mȧnsson et al., Nature, submitted
(2013)]

I. INTRODUCTION

Single-photon two-electron ionization of an atom, re-
ferred to as atomic double photoionization (DPI), rep-
resents the most fundamental atomic collision process
driven entirely by electron correlation. Since one photon
can only couple to one electron, the secondary electron
must be removed by various correlation mechanisms. Be-
cause of this clear manifestation of many-electron correla-
tion, atomic DPI has long and extensively been studied,
both theoretically and experimentally [1, 2]. The two
specific correlation mechanisms, the shake-off (SO) and
knock-out (KO) (also called “two-step-one”) processes
have been identified [3] and their relative contribution
was separated in helium [4]. These studies, however, have
been confined to the static regime in which the timing
information about the DPI process was not accessible.
Implicitly, it is presumed that the SO process, in which
the secondary photoelectron is shaken off after a sudden
rearrangement of the ionic core, is fast. On the contrary,
the KO process, in which the secondary photoelectron is
knocked off by the primary photoelectron in an ionizing
collision, is relatively slow. Hence, the SO process even-
tually takes over with the increase of the photon energy
and emission of the increasingly fast primary photoelec-
tron [5].

Recently, with the advent of attosecond science, ex-
perimental schemes have been designed for time-resolved
studies of single electron emission from an atom - the
process that we refer to as single photoionization (SPI)
[6–8]. In these schemes, the photoelectron is ejected from
an atom by a single attosecond pulse of extreme ultravi-
olet (XUV) radiation, whereas the timing information is
obtained by superimposing a phase-locked infrared (IR)
probe pulse. In attosecond streaking experiments [6], the
time delay between the XUV pulse and a short IR pulse
of a few oscillations is mapped onto the momentum of
the photoelectron in the form of a spectrogram. The time
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delay is then extracted by using the strong field approxi-
mation (SFA) which relates the unperturbed asymptotic
momentum of the photoelectron p0 and the final momen-
tum pf(t) for emission at time t in the presence of an IR
field AIR:

pf (t) ≈ p0 − AIR(t) . (1)

An alternative set of attosecond time delay measure-
ments [7, 8] employs attosecond pulse trains and a
monochromatic IR probe. These experiments utilized
the so-called RABITT (Reconstruction of Attosecond
Bursts by Ionization of Two-photon Transitions) tech-
nique. This technique consists in recording a spectro-
gram as a function of the photoelectron energy and the
relative delay between the train of attosecond pulses and
the weak IR probe [9]. The pump-probe delay is mapped
onto the phase of the sideband oscillations caused by in-
terference of alternative two-photon ionization processes.

A more elaborate theoretical interpretation of the at-
tosecond time delay measurements in SPI takes into
account the interplay of an IR field with the long-
range Coulomb potential of the ionic core, the so-called
Coulomb-laser coupling (CLC) [10, 11]. This effect leads
to modification of Eq. (1) to the following form

pf (t) ≈ p0 − αAIR(t+ tS) . (2)

Here α is a correction factor for the amplitude of the
momentum shift induced by the streaking field, and the
time delay measured in attosecond streaking experiments
is split into two contributions:

τS = τW + τCLC . (3)

Here τW is the photoelectron group delay, also known
as the Wigner time delay, which is defined as the en-
ergy derivative of the complex phase of the quantum am-
plitude of XUV absorption [6, 12]. An additional term
τCLC arises due to the Coulomb-laser coupling. Similar
to Eq. (3), the atomic time delay measured in RABITT
experiments can be presented as

τA = τW + τcc . (4)
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Here τcc is the time delay due to the complex phase of
the matrix element of the IR photon absorption (the
continuum–continuum or “cc” transition). For a weak
IR probe, this term can be modeled using lowest-order
perturbation theory [13, 14]. It has been demonstrated
analytically that the IR-induced delays are equal, τCLC =
τcc, provided that the IR intensity is weak. In this sense,
the delay in streaking experiments also originates from
the same phase-shift of the two-photon (XUV+IR) ma-
trix element, c.f. Ref. [13].

Further, it has been shown that correlated two-electron
atomic transitions, such as single photoionization with
excitation (shake-up), lead to modifications of the streak-
ing time delay, Eq. (3), by electron-electron polarization
effects [16]:

τS = τW + τCLC + τee
CLC . (5)

In contrast to the numerous and detailed time-resolved
studies of SPI, the timing analysis of DPI has been lim-
ited so far. The only published theoretical work [15] ana-
lyzed DPI of He in the attosecond streaking configuration
without an explicit account for the probing IR field. A re-
cently completed experimental work [17] probed the DPI
of the 5p6 shell of xenon on the attosecond time scale us-
ing the RABITT technique. As a reference clock in this
experiment, the SPI of the same shell was used. The lat-
ter was modeled theoretically using Eq. (4) in which the
Wigner time delay was extracted from the calculation [18]
that accounted for inter-shell correlation. The result was,
quite counter-intuitively, that the DPI and SPI processes
from the outer shell of Xe showed no significant relative
delay within the experimental uncertainty. This finding
was interpreted in Ref. [17] in terms of the leading DPI
mechanisms using diagrammatic perturbation theory.

The purpose of the present work is two-fold. First,
we want to extend the definition of the Wigner time de-
lay in XUV driven photoionization to the DPI process
and to evaluate its specific components due to individual
photoelectrons group delay and their mutual correlation.
Second, we want to describe the effect of the probing IR
field on these individual and correlated components of
the time delay. We employ the lowest order perturbation
theory valid for closed shell atomic targets like noble gas
atoms. We give specific numerical estimates for the time
delay in DPI of the outer np6 shell of Xe and make a com-
parison with a recent experiment [17]. A brief account
of our theory was published alongside the experimental
data. Here, we present our results in considerably more
detail.

The present paper is organized as follows. In Sec. II, we
outline the key ingredients of the experimental technique.
In Sec. II A we recall the theoretical interpretation of the
time delay measurement in SPI. In Sec. II B we extend
this interpretation to DPI based on general properties of
the ionization amplitude. In Sec. III we consider specific
mechanisms of DPI. In Sec. III A we perform a diagram-
matic analysis of the laser-assisted shake-off and knock-
out mechanisms in DPI. In both cases, we show explicitly
that the experimental observable is the sum of the time
delay in DPI, as derived empirically in Sec. II B, but it
also includes a correction due to the IR probing process.
In Sections III B 1 and ?? we give correlation corrections
to the time delay which are specific to the shake-off and
knock-out mechanisms, respectively. In Section III B 2

we give numerical estimates for the interaction strength
with the probe field. In Sec. IV we make a comparison
with the available experimental data for Xe reported in
[17]. Finally, in Sec. V we conclude by outlining possible
extensions of the present work and the future directions
of time delay studies of multiple atomic ionization. The
atomic units are used throughout the paper.

II. RABITT TECHNIQUE

A. RABITT measurement of single ionization

A detailed introduction to the RABITT method for
time delay studies in SPI is found in Refs. [13, 23]. The
probability modulation of a sideband 2q in a RABITT
spectrogram is given by

S2q(τ) ∝ cos(2ωτ − ∆φ2q + ∆θ2q) .

Here ω is the IR photon frequency, τ is the time delay
between the the XUV and IR fields, ∆φ2q denotes the
phase difference between the two harmonics with order
2q+ 1 and 2q − 1, while ∆θ2q is the phase difference be-
tween the two quantum paths leading to the final energy.
The photoelectron may either absorb a photon from the
harmonic order 2q − 1 plus a probe photon or it may
absorb a photon from the harmonic 2q + 1 and emit a
probe photon. We may relate the harmonic phase dif-
ference to an approximate group delay of the attosecond
pulses τGD ≈ ∆φ2q/2ω relative to the zero-time for the
ionization process. Similarly, we may define the atomic
delay τA = ∆θ2q/2ω, which describes an additional de-
lay inherent to the two-photon ionization process. As
mentioned above, in connection with Eq. (4), the latter
includes a Wigner-like delay,

τW ≡
dϕ

dΩ
≈
ϕ(ǫ+ ω) − ϕ(ǫ− ω)

2ω
, (6)

corresponding to an XUV frequency between the odd har-
monics, Ω ≈ 2qω. In Eq. (6), a finite difference approxi-
mation is made to the energy derivative of the complex
phase φ = argMSPI(p) of the angle-resolved matrix el-
ement of SPI leaving the photoelectron in the momen-
tum state p, with energy ǫ = p2/2. In the single ac-
tive electron approximation, this phase can be related to
the elastic scattering phase ηλ of the photoelectron on
the residual ion in the dominant angular channel λ (see
Eq. (15) in Sec. III A). A more general expression in-
cludes an addition term due to the inter-shell correlation
(c.f. Eq. (20) of Guénot et al. [8])

τW ≡
dφ

dǫ
=
dηλ

dǫ
+
dδλ
dǫ

. (7)

B. Wigner-like delay in DPI

In this subsection we define the Wigner delay compo-
nent, τW, in the DPI process. Similar to Eq. (7), it is
equivalent to the XUV photon energy derivative of the
phase of the amplitude of the DPI process

τ
(DPI)
W =

∂

∂Ω
argMDPI(p, q) , (8)
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leading to the two photoelectrons p and q. The excess
energy above the double ionization threshold, E = Ω −
IDI, and the energy difference, ∆E, are related to the
energy of the individual electrons, (ǫp, ǫq), as

(
E

∆E

)

=

(
1 1
1 −1

) (
ǫp
ǫq

)

. (9)

We make a linear transformation of Eq. (9) to the in-
dividual electron energies and find that a change of the
total energy (here, given by the XUV photon) is

∂

∂Ω
=

∂

∂E
=

1

2

∂

∂ǫp
+

1

2

∂

∂ǫq
, (10)

while the energy difference is unchanged. If we are able to
isolate the dominant channels in the angular momentum
expansion of both photoelectrons, then we can write the
phase of the DPI amplitude as

argMDPI = ηλp
(ǫp) + ηλq

(ǫq) + δ
(ee)
λp,λq

(ǫp, ǫq) , (11)

where the first two terms in the right-hand side are the
elastic scattering phases of the two photoelectrons (as in
SPI) and the third term is due to their correlation. The
DPI version of Eq. (7) can thus be written as

τ
(DPI)
W =

1

2




∂ηλp

∂ǫp
+
∂ηλq

∂ǫq
+
∂δ

(ee)
λp,λq

∂ǫp
+
∂δ

(ee)
λp,λq

∂ǫq



 , (12)

which we may interpret as the average Wigner-like delay
of the two electrons plus correction terms due to their
correlation.

III. DPI MECHANISMS

A. Diagram analysis

In Fig. 1 (a)–(h) we present the time-ordered Feynman-
Goldstone diagrams for double ionization by absorption
of one or two photons. These processes result in a pri-
mary photoelectron, p, and a secondary electron, q, both
with positive energy, ǫp, ǫq > 0. Consequently, the atom
is left with two remaining holes, a and b, with ǫa, ǫb < 0.
The lowest-order perturbation diagrams for the SO and
KO processes following absorption of one XUV photon
are shown in Fig. 1 (a) and (e), respectively, where en-
ergy conservation is enforced on the outgoing particles,

E = ǫp + ǫq = ǫa + ǫb + Ω. (13)

The corresponding laser-assisted processes, LASO and
LAKO, where an additional IR photon is exchanged
by one of the photoelectrons, are shown in Fig. 1 (b)–
(d) and (e)–(h), respectively. In these two-photon pro-
cesses energy conservation must be enforced,

E = ǫp + ǫq = ǫa + ǫb + Ω ± ω, (14)

for either absorption (+ω) or emission (−ω) of an IR
photon. We will limit our analysis to the dominant pro-
cesses that are initiated by absorption of one XUV pho-
ton and then probed by one IR photon, i.e. we neglect
all interactions of the IR field with the initial state and

with the holes. However, there are still three distinct
mechanisms for how the IR photon can interact with the
excited system. The IR photon may interact with the
primary photoelectron before double ionization has oc-
curred, Fig. 1 (b) and (f), or it may interact with the ei-
ther of the electrons after double ionization has occurred,
Fig. 1 (c)–(d) and (g)–(h). In this way, the SPI process
is imprinted on the DPI process in a nontrivial way by
the interaction with the IR probe field.

The states in Fig. 1 are written with short-hand nota-
tion for a spherical basis, e.g. |p〉 ≡ |kp, Lp,Mp〉, where
the quantum number p stands for the complete set of or-
bital quantum numbers (explicit account for the spin is
not given here since all interaction are spin-independent).
We use the following phase-convention for the continuous
energy states

ψp(r) ≡ 〈r|p〉 ≡ exp(−iηp)
ukp,Lp

(r)

r
YLp,Mp

(r/r) , (15)

which ensures that the outgoing part of the real ra-
dial states, up(r) ≡ ukp,Lp

(r), form an uniform phase
front with the Coulombic logarithmic diverging phase,
kpr+Z ln(2kpr)/k, where Z is the effective charge of the
ion after ionization. The asymptotic phase-shift of the
energy state with angular momentum Lp,

ηp ≡ − π
2Lp + σ(Lp, kp) + δ(Lp, kp) , (16)

includes the centrifugal phase, the hydrogenic phase and
the phase-shift due to an ionic potential (static plus ex-
change), respectively.

In this work we will consider angle-integrated energy
states, Eq. (15), that were the observables in the recent
experiment on laser-assisted double photoionization by
attosecond pulses [17]. For simplicity we will also assume
that one final angular momentum pair to dominant.

1. Shake-off mechanism (SO)

The equation for the SO diagram in Fig. 1 (a) is

M
(a,b;p,q)
SO (ǫp, ǫq) = −

∑

c

〈p|dΩ|c〉〈cq|r
−1
12 |ab〉

(ǫc + Ω − ǫp)
, (17)

where the primary electron, p with energy ǫp, is ejected
from any occupied atomic state, c, by absorption of one
XUV photon, Ω. Then the corresponding hole, c, by way
of the Coulomb interaction, undergoes an Auger decay
into two holes, (a, b), and a secondary electron, q with
energy ǫq, is “shaken off”. We mention that the diver-
gence that occurs in Eq. (17) for ǫp = ǫc + Ω is artificial
and reduced to a finite peak when higher-order correc-
tions are included, c.f. Ref. [24].

5p−1 2 × 5p−1 5p−2 5s−1 4d−1

ǫexp (eV) -12.1 -24.2 -33.1 -23.3 -67.5

TABLE I: Experimental energies of holes in xenon [25].



4

FIG. 1: Lowest-order perturbation diagrams for the shake-off (SO) process (a); laser-assisted shake-off (LASO) processes (b)–
(d); the knock-out (KO) process (e); and laser-assisted knock-out (LAKO) processes (f)–(h). The holes (a, b, c) are represented
by down arrows (↓), while the primary (p) and secondary (q) electrons are drawn with up arrows (↑). The XUV photon and the
IR photon are fast and slow wiggles, respectively, while the Coulomb interaction is a dashed line. Summation over all primed
electron states and the core (c) is implied.

Here, we will consider the case of a virtual Auger decay,
ǫq ≈ ǫa + ǫb − ǫc < 0, which is typical of outer atomic
shells. As an example, we review the Xe atom where the
final holes a and b are located in the outer-most sub-shell
5p, see Table. I. The binding of the two interacting holes
is even greater than the sum of their individual energies.
This ensures that the secondary electron can not easily
escape (autoionize), instead, it is the “shake-up” that is
the domiant (on shell) process. However, there is a small
probability for the the emission of a secondary electron
by the SO process due to energy sharing in the double
ionization process, Eq. (14). According to Table. I, the
secondary electron must “borrow” at least 9.8 eV in order
to escape via c = 5s−1 leaving the 5p−2 state behind. We
will not consider autoionization, e.g. via c = 4d−1, where
the binding of the hole is sufficient to create two holes in
the outer valence in an on shell-process, ǫ5p+ǫ5p−ǫ4d > 0.

2. Laser-assisted shake-off mechanism (LASO)

We proceed by considering the various diagrams of the
LASO process, Fig. 1 (b)–(d). First, we note that the
two time-orders for the IR interaction with the primary
electron, Fig. 1 (b) and (c), have identical structure and,
therefore, only differ in their energy denominators. Mak-
ing use of energy conservation for the final state, Eq. (14),
these two diagrams can be joined into one effective ma-
trix element,

M
(p)
LASO(ǫp, ǫq) = (18)

−
∑

c,p′

∫
〈p|dω |p

′〉〈p′|dΩ|c〉〈cq|r
−1
12 |ab〉

(ǫc − ǫa − ǫb + ǫq)(ǫp ∓ ω − ǫ′p)
.

The first factor in the denominator of Eq. (18) is of
“Auger type” and it similarly describes the (virtual) de-
cay of a hole, c, into two holes, (a, b), and one electron,
q. This denominator is identical to the SO process, if we
substitute Ω in Eq. (17) using Eq. (13).

The second factor in Eq. (18) is related to the interme-
diate state of the primary electron, as it interacts with

the IR field. Similar to the laser-assisted one-electron
ionization process, this transition occurs from an out-
going Coulombic wave of the energy shifted by one IR
photon relative to the final state energy, ǫp′ = ǫp ∓ ω,
for IR absorption and emission, respectively. The details
of this above-threshold transition is identical to that of
the “cc” transition in SPI and, therefore, leads to a cc
phase-shift, c.f. Ref. [13]. The phase of LASO for the
primary electron (p) contains

argM
(p)
LASO ∼ ϕp(ǫp ∓ ω) + φcc(ǫp;±ω) + ϕq(ǫq), (19)

where the scattering phase of the primary photoelectron
is evaluated at one IR photon away from the final energy,
while the scattering phase of the secondary electron is
that of the final energy [quantum numbers correspond to
Fig. 1 (a)].

In Fig. 1 (d) the secondary electron, q, is probed by
LASO. Using energy conservation, Eq. (14), the corre-
sponding denominator,

M
(q)
LASO(ǫp, ǫq) = (20)

∑

c,q′

∫
〈q|dω |q

′〉〈cq′|r−1
12 |ab〉〈p|dΩ|c〉

(ǫc − ǫa − ǫb + ǫq ∓ ω)(ǫq ∓ ω − ǫ′q)
,

reveals that the secondary electron is shaken off with an
intermediate energy, ǫq′ = ǫq ∓ω, and then transitions to
the final state, q, by interaction with the IR field. The
phase of the LASO for the secondary electron (q) contains

argM
(q)
LASO ∼ ϕp(ǫp) + ϕq(ǫq ∓ ω) + φcc(ǫq;±ω), (21)

where the phase of the primary electron is that of the
final energy, while the phase of the secondary electron is
evaluated at one IR photon energy away from the final
state [quantum numbers correspond to Fig. 1 (a)].

The total LASO process, MLASO(a, b; p, q; Ω, ω), is a
superposition of both processes,

|MLASO| exp(iΦLASO) = M
(p)
LASO +M

(q)
LASO, (22)

where the IR field interacts with the primary or sec-
ondary electron. For simplicity, we consider only the
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dominant process, where the primary electron is faster
than the secondary electron, ǫp > ǫq. The total LASO
matrix element can be rewritten as

M = exp(iΦ̄) × 2
(
M̄ cos∆Φ + i∆M sin ∆Φ

)
, (23)

where we temporarily suppressed the subscript LASO for
brevity and the average and difference phases are defined
as

Φ̄ = 1
2 (argM (p) + argM (q))

∆Φ = 1
2 (argM (p) − argM (q)). (24)

The corresponding magnitudes for average, M̄ , and dif-
ference, ∆M , in Eq. (23) are defined in an analogous
way. According to Eq. (23), the total phase of the LASO
matrix element depends on the relative strength of the
two processes in much the same way as the interference
of two laser beam depends on their respective strength.

In order to estimate the relative strength of the two

contributions, |M
(p)
LASO| and |M

(q)
LASO|, we turn to the

strong field approximation (SFA). The IR field can
“streak” the photoelectron in energy by

∆ǫ ≈ −p0A
IR(t) , (25)

where p0 is the magnitude of the final momentum (with-
out IR) along the polarization axis of the vector poten-
tial. This expression is obtained by squaring Eq. (1) and
keeping the term linear in AIR(t). In this sense, the in-
teraction with the IR field gives the electron a boost in
energy that is linear with its own momentum. Quantum
mechanically, the on-set of streaking can be performed
using the photon picture [13]. By combining these two
view points, we derive that the quantum mechanical am-
plitude of the IR induced transition is

|acc| ≈
p0

2ω2
, (26)

where the IR absorption strength is indeed linear with the
momentum of the ejected electron, but the interaction
strength also increases strongly as the frequency of IR
field is reduced. A more detailed numerical estimate will
be given in Sec. III B 2, where we show that this linear
behavior is a good approximation for high momentum of
the photoelectron.

Using Eq. (26), the magnitudes of the LASO process
can be approximated as

M̄LASO ≈ 1
2 |MSO| ×

p0(ǫp) + p0(ǫq)

2ω2

∆MLASO ≈ 1
2 |MSO| ×

p0(ǫp) − p0(ǫq)

2ω2
, (27)

where |MSO| is the magnitude of the SO process (with-
out IR field present), which will be discussed further in
Sec. III B 1.

By inserting Eq. (27) into Eq. (23), we identify that
the phase of the total LASO process,

Φ = Φ̄ + atan

[
p0(ǫp) − p0(ǫq)

p0(ǫp) + p0(ǫq)
tan∆Φ

]

,

︸ ︷︷ ︸

δΦweight

(28)

is the sum of the average LASO phase and a phase weight
correction, δΦweight, that accounts for the different IR

interaction strengths of the two electrons. At equal en-
ergy sharing, we have p0(ǫp) = p0(ǫq) → δΦweight = 0,
and the LASO phase will reduce to the average phase
of the two individual processes, Φ̄. In the other limit,
when p0(ǫp) ≫ p0(ǫq), the correction phase turns the to-
tal phase into that of the primary electron, Eq. (19), and
the LASO process becomes insensitive to the phase of the
slower electron.

In order to determine the experimental observable of
an angle-integrated experiment, we must add all complex
amplitudes leading to the same final states, (a, b; p, q),

including both absorption, M
(abs)
LASO = MLASO(Ω2q−1, ω),

and emission, M
(emi)
LASO = MLASO(Ω2q+1,−ω), of a probe

photon. These amplitudes are squared together and the
observable delay is identified from the crossterm (analo-
gous to the SPI RABITT method)

τLASO =
Φ

(emi)
LASO − Φ

(abs)
LASO

2ω

= 1
2ω

{[
ϕp(ǫp + ω) − ϕp(ǫp − ω)

+ϕq(ǫq + ω) − ϕq(ǫq − ω)

+φcc(ǫp;−ω) − φcc(ǫp;ω)

+φcc(ǫq;−ω) − φcc(ǫq;ω)
]
× 1

2

+δΦLASO
weight(−ω) − δΦLASO

weight(ω)
}
, (29)

relative to the group delay of the attosecond pulse cen-
tered of XUV frequency Ω2q = ǫp + ǫq − ǫa − ǫb [quan-
tum numbers correspond to Fig. 1 (a)]. By applying the
finite-difference derivatives for the phase variations and
the definition of the cc-delay [13], we obtain the two-
electron average of the Wigner delay and cc-delay, plus
an IR-weighting term,

τLASO ≈ 1
2 [τ

(p)
W + τ

(q)
W + τ (p)

cc + τ (q)
cc ] + δτLASO

weight. (30)

The probing process by the IR field does give access to
the average Wigner delay of the two electrons as expected
from Eq. (12), but it also introduces an average cc-delay
that is quite similar to the SPI case. Unlike SPI, how-
ever, an effect rises in DPI due to respective interaction
strengths with the IR field of two electrons. Our deriva-
tion shows that this effect is zero at equal energy sharing,
where both electrons interact equally with the IR field.
However, as one electron becomes faster, the total LASO
delay will only give information about that particular
electron.

These lowest-order results can only be regarded as the
starting point for the analysis of RABITT type measure-
ments in DPI. In order to include more correlation we
may incorporate RPAE-type corrections, as was shown
in Eq. (7) for SPI. For the primary electron such a pro-
cedure is adequate, but for the secondary electron, the
effective charge of the nucleus will be greater (Zeff ≈ 2),
so that further correlation must be considered. These ef-
fects are consistent with our heuristic analysis, where we

introduced the additional δ
(ee)
λp,λq

(ǫp, ǫq). Similarly, the cc-

delays will be affected by the effective charge of the ion,
where the secondary electron will absorb the IR photon
in an ionic potential of Zeff ≈ 2, rather than Zeff ≈ 1.
Electron–electron interaction may further influence this
screening, provided that their kinetic energies are not
too different. Finally, a substantial SO process may in-
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volve additional virtual Coulomb interactions which will
be discussed further in Sec. III B 1.

In angle-integrated experimental measurements, not
all degrees of freedom are observed and it is necessary
to sum incoherently all individual probabilities for each
angular paths. In addition, the cases where the sec-
ondary electron is faster than the primary, i.e. when
ǫq = ǫp > ǫp = ǫq. This individual contribution is easily
achieved by interchanging ǫp and ǫq in Eq. (38).

3. Knock-out mechanism (KO)

The equation for the KO process in Fig. 1 (e) is

M
(a,b;p,q)
KO (ǫp, ǫq) = lim

ε→0+

∑

p′

∫
〈qp|r−1

12 |bp′〉〈p′|dΩ|a〉

ǫa + Ω − ǫ′p + iε
, (31)

where the primary electron, p′, is ejected from the occu-
pied atomic state, a, by absorption of one XUV pho-
ton, Ω. Then the primary electron scatters inelasti-
cally on the ion by way of the Coulomb interaction,
and a secondary electron electron, q, is “knocked out”
from an occupied atomic state, b. We will consider the
case where both holes are in the outer-most valence sub-
shell, a = b = 5p−1. For knock-out to occur (and not
just knock-up), the photon must have sufficient energy,
Ω > |ǫa|+ |ǫb|, or more accurately, Ω > IDI. This implies
that the primary photoelectron will be in the continuum
already before the KO takes place. Treating interactions
occurring in the continuum requires special care concern-
ing the boundary condition of the problem. Here, we
have written explicitly the limit using ε→ 0+, which en-
forces that the XUV field is zero at “minus infinity”, c.f.
Ref. [23]. Consequently, the photoelectron will be of out-
going character (described by the coherent superposition
over the p′ states) before the “knock” occurs.

Evaluation of the limit in Eq. (31), leads to

MKO =

|ℓa±1|
∑

λ

{
ǫ′

p
<0

∑

p′

〈qp|r−1
12 |bp′λ〉〈p

′
λ|dΩ|a〉

(a+ Ω − ǫ′p,λ)

+ p.v.

∫ ∞

0

dǫ′p
〈qp|r−1

12 |bp′λ〉〈p
′
λ|dΩ|a〉

(a+ Ω − ǫ′p)

− iπ 〈qp|r−1
12 |bp0

λ〉〈p
0
λ|dΩ|a〉

}

, (32)

where the first line holds a summation over all intermedi-
ate bound excited states, p′, λ with ǫ′p,λ < 0; the second
line is a Cauchy principal value integral over all interme-
diate continuum states, p′λ with ǫ′p > 0 but ǫ′p 6= ǫ0; and
the third line is the “on-shell” contribution over the states
p0

λ = p′λ(ǫ0), where ǫ0 = ǫa +Ω. It is important to notice
the imaginary number, i, on the resonant term, which sig-
nifies that the KO process carries a specific phase shift
on its own. The summation on λ = |ℓa ± 1| in Eq. (32)
labels the angular momentum of the intermediate wave
packet after the dipole transition from the initial state,
a. The phase of the total KO process can then be writ-
ten as the sum of the two final scattering phases and an
intrinsic phase-shift due to the KO,

argMKO ∼ ϕp(ǫp) + ϕq(ǫq) + δ
(a,b;p,q)
KO (ǫp, ǫq). (33)

Explicitly, the phase of the KO process is determined by
the ratio of the resonant above-threshold excitation and
the sum of below-threshold excitation and non-resonant
above-threshold excitation. In the limit of high energy,
we expect the bound part to the small and the continuum
contributions to be comparable, so that δKO → π/2. The
actual evaluation of the KO phase-shift is challenging,
but we will provide an estimate in Sec. ??.

4. Laser-assisted knock-out mechanism (LAKO)

We now turn to the laser-assisted KO diagrams, which
we refer to as the LAKO processes, shown in Fig. 1 (f)–
(h). First, we note that the probing of the primary elec-
tron, Fig. 1 (f) and (g), have different structure and can,
therefore, not be joined as was done for the LASO pro-
cess. For this reason, we have to consider all three LAKO
diagrams separately as individual processes. In processes
where the primary and secondary electrons are probed af-

ter KO, the lower parts of the diagrams are identical to
the KO process, Fig. 1 (e).

Using energy conservation, Eq. (14), the matrix el-
ement for probing of the primary electron after IR,
Fig. 1 (g), becomes

M
(p)
LAKO(ǫp, ǫq) = (34)

lim
ε1,ε2→0+

∑

p′, p′′

∫
〈p|dω|p

′′〉〈qp′′|r−1
12 |bp′〉〈p′|dΩ|a〉

(ǫa + Ω − ǫ′p + iε1)(ǫp ∓ ω − ǫ′′p + iε2)
,

where the first factor is indeed analogous to the KO pro-
cess, Eq. (31), and the second factor describes absorp-
tion (−ω) or emission (+ω) of an IR photon toward the
final state, p, with energy ǫp. Both interactions occur
in the continuum and their evaluation requires setting
the boundary condition of the interaction with the fields,
Ω + iε1 and ∓ω + iε2 where ε1, ε2 → 0+, respectively.
The first limit, ε1, then gives a superposition similar to
that in Eq. (32), but where the primary electron after
KO is a superposition over all p′′ states. This superpo-
sition is then treated using the second limit, ε2, which
enforces that the primary electron should be outgoing
with an energy one IR photon away from the final state,
ǫ′′p = ǫp ∓ ω. The details of this second step are identical
to that of the “cc” transition in SPI and, therefore, leads
to a cc phase-shift, c.f. Ref. [13]. The phase of the LAKO
process for the primary electron contains

argM
(p)
LAKO ∼ δ

(a,b;p,q)
KO (ǫp ∓ ω, ǫq)

+ ϕp(ǫp ∓ ω) + φcc(ǫp;±ω) + ϕq(ǫq), (35)

where both the KO phase-shift and the scattering phase
of the primary electron are evaluated at one IR photon
from the final state, while the secondary electron is eval-
uated at the final energy [quantum numbers correspond
to Fig. 1 (e)].

Similarly, the denominator for probing of the sec-
ondary electron, Fig. 1 (h), is

M
(q)
LAKO(ǫp, ǫq) = (36)

lim
ε1,ε2→0+

∑

p′, q′

∫
〈q|dω|q

′〉〈q′p|r−1
12 |bp′〉〈p′|dΩ|a〉

(ǫa + Ω − ǫ′p + iεp)(ǫq ∓ ω − ǫ′q + iεq)
,
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and the phase contains

argM
(q)
LAKO ∼ δ

(a,b;p,q)
KO (ǫp, ǫq ∓ ω)

+ ϕp(ǫp) + ϕq(ǫq ∓ ω) + φcc(ǫq;±ω), (37)

where, instead, the intermediate secondary electron is
one photon away from its final energy.

The phase of LAKO process, including only probing
after KO, takes an analogous form as for the case of the
total LASO, Eq. (28), due to the different IR interaction
strength with the two electrons. Following the same line
of reasoning, the delay from the LAKO process (with IR
after KO) becomes

τ
(after)
LAKO =

Φ
(emi)
LAKO − Φ

(abs)
LAKO

2ω

= 1
2ω

{[
δ
(a,b;p,q)
KO (ǫp + ω, ǫq) − δ

(a,b;p,q)
KO (ǫp − ω, ǫq)

+δ
(a,b;p,q)
KO (ǫp, ǫq + ω) − δ

(a,b;p,q)
KO (ǫp, ǫq − ω)

+ϕp(ǫp + ω) − ϕp(ǫp − ω)

+ϕq(ǫq + ω) − ϕq(ǫq − ω)

+φcc(ǫp;−ω) − φcc(ǫp;ω)

+φcc(ǫq;−ω) − φcc(ǫq;ω)
]
× 1

2

+δΦLAKO
weight(−ω) − δΦLAKO

weight(ω)
}
, (38)

where we may identify a two-electron average of the KO
delay, Wigner delay and cc delay plus a weighting cor-
rection,

τLAKO ≈ 1
2 [τ

(p)
W + τ

(q)
W + τ

(p)
KO + τ

(q)
KO

+τ (p)
cc + τ (q)

cc ] + δτLAKO
weight . (39)

Our analysis for the lowest-order LAKO process is con-
sistent with our heuristic approach, Eq. (12), as our re-
sults includes the average of the individual Wigner de-

lays for the two electrons, 1
2 (τ

(p)
W +τ

(q)
W ) and also the first

correlation-induced delays due to the interaction of two

active electrons, 1
2 (τ

(p)
KO + τ

(q)
KO). Already the lowest-order

LAKO process is affected by correlation-induced phases
and it requires a theory beyond static scattering phases.
Similar to LASO, the LAKO process also introduces a cc
delay that is similar to that of SPI and it shifts the delay
smoothly depending on the relative interaction strength
of the electron with the IR field.

The diagram in Fig. 1 (f) requires special attention.
On the one hand, it interacts more strongly with the IR
field due to the high momentum of the primary electron
before the energy sharing of the KO applies, see Eq.(26),
which would imply that it is an important effect. On the
other hand, the absorption of an IR photon also changes
the angular momentum of the primary electron, ℓp′′ =
ℓp′ ±1, where dominant process is to increase the angular
momentum to a f−wave. Thus, the primary electron is
“pushed” away from the core (5p) and the corresponding
overlap will slightly be smaller. The interesting aspect
of probing before KO, is that it gives rise to a RABITT
signal that corresponds to the SPI process,

τ
(before)
LAKO = τ

(SPI)
W + τ (SPI)

cc . (40)

One can see this by identifying that the second singu-
larity occurs at the same energy for both absorption and

emission arms of the RABITT process. This implies that
any phase-shift brought by the KO process will cancel
and the only remaining delay will be that of the SPI, i.e.
before KO occurs. In this way, the SPI process will con-
taminate the LAKO process making it difficult to extract
meaningful information about the DPI process.

In angle-integrated experimental measurements, not
all degrees of freedom are observed and it is necessary to
sum incoherently the probabilities for all angular paths.
In addition, the processes where the secondary electron
is more energetic than the primary, ǫq > ǫp, may prove
important in the vicinity of equal energy sharing.

B. Correlation correction

1. Shake-off mechanism

The correlation correction term in Eqs. (11) and (12)
is specific to the DPI mechanism. First, we estimate
this term for the SO mechanism. We expand the SO
diagram Fig. 1(a) beyond the lowest order of the per-
turbation theory over the inter-electron interaction [19].
This expansion includes the virtual Auger decay of the
hole state c into two other holes a′, b′ and an electron
q′. This dressing of the hole state is shown symbolically
in Fig. 2(a) where we introduce an interacting (dressed)
hole C shown by a double line. The corresponding non-
interacting (bare) hole state c is displayed with a thin
solid line. As is illustrated in Fig. 2(b), the dressed hole
state includes an infinite summation of the diagonal self-
energy diagrams Σc, shown in Fig. 2(c). In principle, this
summation should also include non-diagonal self-energy
Σc 6=c′ . But these terms can be ignored for widely sepa-
rated atomic shells, typical for noble gas atoms. In the
diagonal approximation, the infinite summation of the di-
agrams of Fig. 2b can be performed by a geometric series
and it leads to the following modification of Eq. (17):

M
(a,b;p,q)
SO (ǫp, ǫq) =

〈p|dΩ|c〉〈c, q|r
−1
12 |a, b〉

(E − ǫc − iε)

×

(

1 −
Σc(E)

E − ǫc − iε

)−1

. (41)

Here E = ǫp − Ω is the dressed hole energy which may
differ from the bare hole energy ǫc. The diagonal self-
energy

Σc(E) =
∑

a′b′

∑
∫

q′

∣
∣〈c, q′|r−1

12 |a′, b′〉
∣
∣
2

E − ǫc − iε
, (42)

describes modification of the hole state, c, due to correla-
tion. This modification includes a shift of the ionization
potential relative to the bare hole energy ǫc as well as
appearance of the discrete satellite lines and a continu-
ous band in the spectrum of the singly charged ion states
[19]. Each discrete line corresponds to a separate term
in the sum

∑

a′b′,q′ and the continuous band is due to

the integral
∫

q′
. It is this continuous band in the singly

charged ion spectrum that represents the doubly ionized
states with the two holes a′, b′ and the two electrons p, q′.
The imaginary infinitesimal in the denominator gives the
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FIG. 2: Top row: Perturbation series of diagrams for the shake-off (SO) process (a); the correlated hole state (b); the diagonal
hole self-energy (c); Bottom row: Perturbation series of diagrams for the knock-out (KO) process (d); the correlated electron
state (e); the diagonal electron self-energy (f).

formal rule of bypassing the pole when Eq. (41) is evalu-
ated at the energy E sufficient for the real Auger decay.
This decay leads to the set of states ab, q identical to the
final states of the shake-off diagram shown in Fig. 2a.

The imaginary part of the extra factor in the second
line of Eq. (41), associated with the real Auger decay and
the SO process, gives rise to an additional correlation
correction of the phase of the DPI amplitude:

δ
(a,b;p,q)
SO (ǫp, ǫq) = arctan

ImΣc(E)

Re[E − ǫc − Σc(E)]

≈ arctan
ImΣc(E)

E − ǫc
(43)

The approximate equality in the second line of Eq. (43)
is satisfied under the condition that |E − ǫc| ≫ |Σc(E)| .
This condition defines the part of the doubly ionized con-
tinuum that is far from the single ionization transition in
which E = ǫc. In other terms, it is the condition of the
strongly forbidden Auger decay of the bare hole state c.
This condition is satisfied in the case of 5s hole of Xe as
is seen from Table I.

The DPI cross-section, corresponding to the SO pro-
cess of Fig. 2a, differential with respect to the energy
of the primary photoelectron p, is given by the following
expression [19]:

dσ2+
c

dEp

= σ+
c

1

π

ImΣc(E)

|E − ǫc − Σc(E)|2
≈ σ+

c

1

π

ImΣc(E)

|E − ǫc|2
.

(44)
Here σ+

p is the single photoionization cross-section of the
primary photoelectron. By solving this equation relative
to ImΣc, we can express the additional phase of the DPI
amplitude due to the final state correlation in the follow-
ing form:

δ
(a,b;p,q)
SO (ǫp, ǫq) = arctan

π

σ+
c

dσ2+
c

dEp

|E − ǫc| . (45)

We note that this phase correction can be expressed
from the experimentally known cross-sections σ+

p and

dσ2+
c /dEp.
Usually, the DPI channel is weak and the shake-off

phase correction is small. In this case we can equate

the arctangent function with its argument arctan(x) ≃ x
when taking its derivative and simply write the corre-
sponding time delay as

τee−SO
w =

dδ(ee−SO)(ǫp, ǫq)

dEp

≃
π

σ+
c

dσ2+
c

dEp

(46)

Here we only keep the energy derivative of the linear fac-
tor E− ǫc = Ep−Ω− ǫc and neglect all other derivatives.

Expansion of the KO diagram Fig. 1(e) beyond the
lowest order perturbation theory is visualized in Fig.
2(d)-(f). This expansion includes a virtual knock-out
process in which the primary photoelectron p′ scatters
inelastically into the state p” and creates an electron-hole
pair b′, q′. The dressed primary electron state is displayed
by a double line in Fig. 2(d) and represents an infinite
sum of the self-energy terms shown symbolically in Fig.
2(e). The photoelectron self-energy is exhibited in Fig.
2(f). Nonetheless, by restricting to the diagonal terms,
we include important energy corrections to the dressed
propagation of the photoelectron and provide a first esti-
mate of the correlation-induced phase in the KO process.
Summation of the infinite diagonal sequence of the dia-
grams in Fig. 2(e) leads to the following modification of
Eq. (31)

M
(a,b;p,q)
KO (ǫp, ǫq) =

∑
∫

p′

〈q, p|r−1
12 |b, p′〉〈p′|dΩ|a〉

E − ǫ′p + iε
× (47)



1 +
∑
∫

p1

Σp1p′(E)

E − ǫp1
+ iε

+
∑
∫

p1p2

Σp2p1
(E)

E − ǫp2
+ iε

Σp1p′(E)

E − ǫp1
+ iε

+ . . .





where E = ǫa + Ω and the photoelectron self-energy is
given by the following expression:

Σpp′(E) =
∑

b′

∑
∫

p′′

∑
∫

q′

〈q, p′′|r−1
12 |b, p〉〈q, p′′|r−1

12 |b, p′〉

E − ǫp′′ − ǫq′ + ǫb′ + iε
.

(48)

The integral terms in the second line of Eq. (47) can
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be written as

∑
∫

p1

Σp1p′(E)

E − ǫp1
+ iε

= p.v.
∑

p1

∫
Σp1p′(E)

E − ǫp1

︸ ︷︷ ︸

Off−diagonal

− iπΣp′p′(ǫp′)
︸ ︷︷ ︸

Diagonal

.

We make the so-called pole approximation and neglect
the principal value integral in the above expression. This
leaves us with the sequence of diagonal self-energy terms
Σp′p′ ≡ Σp′ that can be summed by way of the geomet-
rical progression:

1− iπΣp′(ǫp′) + [−iπΣp′(ǫp′)]
2
+ . . . = [1 + iπΣp′(ǫp′)]

−1

and then neglected the off-shell terms. Finally, we make
the similar pole approximation to the KO diagram of Fig.
2(d) and retain the primary photoelectron with the on-
shell energy ǫp′

0
= ǫp+ǫq−ǫb . Then the expression for the

correlation-induced phase of the KO amplitude becomes

δ
(a,b;p,q)
KO (ǫp, ǫq) = arctan

−πReΣp′

0
(ǫp′

0
)

1 − πImΣp′

0
(ǫp′

0
)

(49)

We note that if we neglect ImΣ in the denominator, we
arrive to the expression that gives correlation correction
to the primary photoelectron scattering phase [20].

2. Influence of the probe field

Discussion about about probe field. Linear.

IV. TIME DELAY IN DPI OF XENON

Let us consider the kinematics corresponding to plots
of Fig. 5 by Mȧnsson et al. [17]. They used the photon
energy ω = 40.1 eV. At this photon energy, most of the
shake-off intensity comes from the primary photoioniza-
tion of the Xe 5s shell [21, 22]

In the case of the 3Pq doubly charged ion, this cor-
responds to the total energy of the photoelectron pair
of 7 eV and the fixed energy slow electron takes 2 eV.
So the fast photoelectron takes 5 eV. With the HF
energy E5s = 25.7 eV, this makes ǫ = 35.1 eV and
ε − Ei ≃ 10 eV. Let us assume that the whole contin-
uous part of the satellite spectrum takes about 10% of
the main line and this spectrum is spread over the 1 Ry =
0.5 au energy band. With these estimates, τSO ≃ 0.2π au
= 15 as. A more accurate estimate of the SO term can be
done by using the experimental cross-sections for single
and double photoionization.

The full time-delay in DPI under the SO model is
therefore

τ =
1

2

∂

∂ǫp
η5s→Ep(ǫp) +

1

2

∂

∂ǫq
η5p→Ed(ǫq) + τSO (50)

The time delay due to the phase factors of individual pho-
toelectrons can be estimated using the data by Kheifets
[18]:

∂

∂ǫp
η5s→Ep

∣
∣
∣
ǫp=5 eV

= 220 as ,
∂

∂ǫq
η5p→Ed

∣
∣
∣
ǫq=2 eV

= 550 as

Hence,

τ =
1

2

∂

∂ǫp
η5s→Ep(ǫp)+

1

2

∂

∂ǫq
η5p→Ed(ǫq)+τSO = 110+275+15 = 400

These are numerical values for photoelectron scatter-
ing on Xe+ 5p5 in d-partial wave. We see that phase cor-
rections are not different from corresponding self-energy
values when multiplied by −π. When the phase deriva-
tive plot is converted to the time delay it rarely exceeds
10as.

The time delay due to the phase factors of individ-
ual photoelectrons can be estimated using the data by
Kheifets [18]:

∂

∂ǫp
η4d→Ef

∣
∣
∣
ǫp=5 eV

= 190 as ,
∂

∂ǫq
η5p→Ed

∣
∣
∣
ǫq=2 eV

= 550 as

It is more prudent to use η5p→Ef phase but I only have
the HF value for this phase that returns 203 as time delay.

V. CONCLUSION
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