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A generalized expression for the complex photoionization amplitude in the vicinity of a Fano
resonance is proposed to evalulate the Wigner-Eisenbud-Smith (WES) time delay in the resonant
region. The validity of this expression is tested in comparison with accurate numerical calculations
empolying the relativistic random phase approximation and multichannel quantum defect theory.
The Ne 2s → np resonance series is used as a convenient test case.
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I. INTRODUCTION

Recent developments in attosecond science have en-
abled a close examination of ultrafast electron dynamics
in atoms and molecules [1–11]. The present study ex-
amines the intrinsic Wigner-Eisenbud-Smith time delay
(τWES ) [12, 13] associated with photoelectron ejection in
the vicinity of an autoionizing resonance. Photoioniza-
tion time delay information is embedded in the energy de-
pendence of the complex photoionization amplitude and
can be studied experimentally using techniques such as
attosecond streaking [7] and RABBITT [6, 11]. Measure-
ments of the WES time delay in photoionization provide
a signature of the many-electron correlations in atoms
and molecules. They also provide new insights into the
real-time dynamics of the ionization process [14–16]. A
number of theoretical and experimental works have been
reported in the literature in the last five years, see e.g.
[17–23]. The photoionization WES time delay is given by
τWES = dδ/dE, where δ is the phase of the photoioniza-
tion amplitude. Here ~ = e = m = 1. When the phase
changes rapidly with energy, there is a significant time
delay. A number of earlier studies focussed on the region
of the photoionization Cooper minimum where the phase
changes rapidly [24, 25]. Most recent studies encompass
the autoionizing resonances [26, 27].

Modulations of the phases and their subsequent effects

on photoionization time delay due to the presence of an
external cage (such as when the atom is embedded in
a fullerene molecule) have also been found to be of in-
terest [28–30]. Another region where the phases change
rapidly is the region of autoionization resonances, which
is governed strongly by electron-electron correlation. The
mixing of a bound photoexcitation channel with a con-
tinuum channel in a many-electron system results in
Fano-Feshbach autoionization resonances. The resonance
profiles are often asymmetric owing to the interaction
between resonant and background (non-resonant) inter-
fering quantum processes. The Fano resonance shape
[31, 32] is of great interest in many contexts, e.g., [33–
35]. The resonance profiles have a width Γ about the
resonance energy Er and the profile index q and the cor-
relation factor ρ that define them [31].

The lifetime of an atomic excited state is typically
of the order of a few femtoseconds to nanoseconds and
can be determined using time-resolved spectroscopy [36].
Resonance lifetime studies also are an important tool to
understand electronic structure. The resonance lifetimes
are directly related to the photoionization parameters
such as oscillator strengths, transition probabilities, and
line intensities. Studies of line profiles and resonance
lifetimes have important applications in many areas of
physics. Of particular importance, they also enable the
determination of atomic/ionic relative abundance in stars
and other astrophysical objects [37].
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The effect of resonances on atomic photoemission time
delay has been studied recently for electron transitions
of the outermost valence electrons of argon and neon us-
ing a coincidence detection technique [38]. The region of
autoionization resonance for Mn 3d and 4s photoioniza-
tion channels has also been studied recently in which the
photoemission time-delay was found to dramatically in-
crease in the region of the 3p → 3d giant autoionization
resonance [39].

The photoionization time delay across the autoioniza-
tion resonance region is explicitly associated with the
resonance lifetime that can be determined with attosec-
ond time delay experiments. As a simple example, for a
pure Breit-Wigner resonance, which results from the in-
terference between a single bound-to-bound and a single
bound-to-continuum channel, the scattering amplitude,
f , is given by [40]

f ∼
Γ/2

Er − E − iΓ/2
(1)

which gives the WES time delay as

τ =
Γ/2

(Er − E)2 + (Γ/2)2
(2)

It is seen from Eq. (2) that, for a Breit-Wigner resonance,
the maximum value for the time delay is at E = Er, and
is 2/Γ = 2τ ′ where τ ′ = 1/Γ is the lifetime of the excited
state. However, in an atomic system in which the au-
toionization resonance involves additional excitation or
ionization channels, this result will be seen to be signifi-
cantly modified.

In the present work, photoionization time delay in the
region of the 2s→np autoionization resonances in atomic
neon have been calculated and analyzed. Photoionization
and electron-ion scattering have the same final state, but
have different initial states. These two processes are re-
lated by time reversal symmetry [41]. Accordingly, ingo-
ing wave boundary conditions are employed in photoion-
ization, whereas outgoing wave boundary conditions are
employed to describe collisions. In addition, the pho-
toionization WES time delay in the region of the au-
toionization resonances have been studied in the present
work using the Fano formalism [42] to parametrize the
autoionization resonance profiles.

II. THEORETICAL METHODOLOGY

A. Generalized Fano parameterization

The autoionization resonances are analyzed using the
Fano parameters [31, 32, 42] in terms of which the pho-
toionization cross section in the vicinity of a resonance is
given by

σ(E) = σ0(E)
[

1 − ρ2 + ρ2 (q + ǫ)2

1 + ǫ2
]

(3)

where σ0 is the non-resonant (background) cross section,
ǫ = (E −Er)/(Γ/2) with Er being the resonance energy,
Γ the resonance width, q is the Fano shape parameter,
and ρ is the correlation coefficient which is required when
the resonance is not a pure Breit-Wigner resonance on
account of additional continuum channels which may be
degenerate at the resonance energy.

In the spirit of this parameterization, we write the
photoionization amplitude in the neighborhood of a res-
onance as

f(ǫ) = f0

[

√

1 − ρ2 + ρ
q + ǫ

i + ǫ

]

∝ f0(ǫ)
[

η +
q + ǫ

i + ǫ

]

(4)

with η =
√

1 − ρ2/ρ. This parameterization is sonsitent
with the cross-section formula (3) because the squared
amplitude (4) differs from (3) only by the term

2ρ
√

1 − ρ2
q + ǫ

1 + ǫ2
ǫ ,

which is vanishing at ǫ → 0 near the resonance.
The phase of the amplitude, arg f(ǫ) is given by

arg f(ǫ) = − tan−1

[

ǫ + η
(1 + ǫ2)

(q + ǫ)

]

−1

(5)

which yields the time delay

τ =
2

Γ

1

1 +
[

ǫ + η 1 + ǫ2
q + ǫ

]2

[

1 +
2ηǫ

q + ǫ
−

η(1 + ǫ2)

(q + ǫ)2

]

(6)

We note that for a vanishingly small background cross
section, i.e., η = 0 andρ = 1, the time delay (6) reduces
to the Breit-Wigner result (2). In addition, the structure
of Eq. (6) allows the time delay to be positive or negative.
Furthermore, at the resonance energy, E = Er (ǫ = 0),
Eq. (9) reduces to

τ =
ǫ→0

2

Γ

1 − η/q2

1 + η2/q2
(7)

which is rather different from the Breit-Wigner result.
In general, the time delay at the resonance energy must
be less than twice the lifetime (the Breit-Wigner result),
and can even be negative. In fact, it follows from Eq. (6)
that as long as η 6= 0, the time delay will be negative
in the region of q + ǫ = 0. Thus, if q < 0, the negative
values of time delay will occur for ǫ > 0, i.e., at energies
above the resonance position, and vice-versa for q > 0.
Note also that q + ǫ = 0 corresponds to a minimum in
the cross section in the vicinity of a resonance, as seen
from Eq. (3). In any case, the WES time delay, in the
neighborhood of a resonance, can be conveniently related
to the Fano parameters of the resonance.

B. Relativistic-random-phase approximation

The relativistic-random-phase approximation (RRPA)
[43, 44] has been used in this work to determine the in-
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put parameters for the relativistic multichannel quantum
defect theory (RMQDT) [45].

Anatoli’s comment: that needs to be explained in
greater detail. How do you derive the Fano prame-

ters from the following equations? None of the earlier
RMQDT papers explained it to me. If one of the co-

authors is puzzled, what happens to the lay reader?!
The RRPA equations are obtained by linearizing

the time dependent Dirac-Hartee-Fock (DHF) coupled
integro-differential equations. The RRPA accounts for
major electron correlations via time forward and time
backward ring diagrams, along with corresponding ex-
change terms. The autoionization resonances have been
subsequently generated using RMQDT [46, 47]. The
RRPA dipole transition matrix element for a transition
effected by the absorption of a photon (represented by

the operator Q
(λ)
J , with J = 1 for the photon angular

momentum and λ = 1 for the electric dipole interaction)
from a bound state nκ to a continuum state ǫκ̄ is given
by [43]:

Dnκ→ǫκ̄ = i1−l̄eιδκ̄〈ǫ, κ̄ ‖ Q
(1)
1 ‖ nκ〉RRPA. (8)

In the above equation, κ = ∓
(

j + 1
2

)

for j =
(

l ± 1
2

)

, and

〈ǫ, κ̄ ‖ Q
(1)
1 ‖ nκ〉RRPA is the reduced matrix element for

the electric dipole transition, with κ̄ = −κ, κ ± 1. Since
the reduced matrix element is complex, the phase of the
dipole matrix element (8) is given by

δnκ→ǫκ̄(E) = tan−1

{

ImDnκ→ǫκ̄

ReDnκ→ǫκ̄

}

. (9)

The WES time delay (in atomic units) in the photoion-
ization channels is then given by

τ
W ES

=
d

dE

(

δnκ→ǫκ̄(E)
)

(10)

III. RESULTS AND DISCUSSION

In the present study, we report the results of
RRPA+RMQDT calculations carried out at two different
levels of truncation of the RRPA, described below. The
different levels of truncation enable us to conduct an ex-
amination of selective interchannel coupling, along with
effect(s) of the selective coupling upon the parametriza-
tion of the resonances and the time delay. The two trun-
cation levels employed are:

(i) 7 relativistic channels from 2p and 2s : 2p3/2 →
ǫd5/2, ǫd3/2, ǫs1/2; 2p1/2 → ǫd3/2, ǫs1/2; 2s → ǫp3/2, ǫp1/2;

(ii) 3 relativistic channels from 2p and 2s: 2p3/2 →
ǫd5/2; 2s → ǫp3/2, ǫp1/2;
Note that the omission of the channels emanating from
the 1s shell is essentially irrelevant for the present cal-
culations since the 1s threshold is so far away, almost a
keV, from the energies considered in our calculations.

The photoionization cross section of the 2p (2p3/2 +
2p1/2) shell (with all 7 channels included) in the region

of the 2s1/2 → np (spin-orbit unresolved) resonance re-
gion is dominated by the 2p3/2 → ǫd5/2 channel. This
is clearly seen in Fig. 1 which shows the absolute values
of the complex matrix elements for the possible five rela-
tivistically split dipole channels in the region of 2s → 3p
resonance. The present work, therefore, restricts the time
delay studies only to the dominant 2p3/2 → ǫd5/2 chan-
nel, as representative of all the possible channels. The
phase and time delay results are shown in Fig. 2 for the
2s → np resonances with n= 3, 4, 5, 6. Across the re-
gion for all the resonances shown, the phase changes by
π radians and the time delay is positive (time-delay) at
an energy just lower than that at the resonance, and it
is negative (time advancement) just above.

The negative time delay (time-advancement) is limited
by the Wigner causality condition [40] and it corresponds
to a repulsive interaction between the escaping photoelec-
tron and the residual ionic field.

Anatoli’s comment: I thought the positively charged
residual ion always attracts the photoelectron unless there

is some exchange modification. Please explain

FIG. 1: Absolute amplitudes of the complex matrix elements
in the five relativistic dipole channels from the 2p subshells for
transitions into the continuum from the 7-channel calculation.
The vertical arrow indicates the position of the 3p resonance.

In the 7-channel calculation shown, the 2s1/2 → np
resonance lifetime for the is found to be 0.051 ps while
the maximum (positive) time delay calculated is 0.061
ps; clearly the time delay is not twice the lifetime as was
the case for a Breit-Wigner resonance, discussed above.
And, in fact, the same is true for the other resonances
shown as well. Furthermore, it is evident from Fig. 2,
that the time delay can be positive or negative, unlike
the Breit-Wigner case discussed above, where the time
delay can only be positive. Thus, the phenomenology
exhibited by these resonances is rather different from the
Breit-Wigner paradigm.
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FIG. 2: Photoionization time delay for the 2p3/2 → d5/2

channel (black line, left scale) and phase of the matrix ele-
ment (blue line, right scale) in the region of the 2s1/2 → np

(n = 3 − 6) spin-orbit unresolved autoionizing resonances.

TABLE I: Fitted Fano parameters for the 2s → np reso-
nances. Anatoli’s comment: Fitted to what? Experimental
values in comparison would be very informative

Resonance Er(eV ) µ q ρ2 Γ(meV ) σ0

3p 49.73 0.85 -1.30 0.94 15 8.800
Expt. [49] 45.54 0.83 1.58 0.75 16

4p 51.3164 0.84 -1.32 0.95 5 8.489
5p 51.8933 0.83 -1.31 0.96 2.24 8.540
6p 52.1674 0.83 -1.35 0.97 1.18 8.440

To demonstrate the utility of Eq. (6), we parametrize
the resonances. The Fano parameters for the 2s → np
resonances obtained are given in Table I where it is seen
that ρ2 and q remain fairly constant for the various res-
onances, as expected in a resonance series. Also, the
quantum defects, µnl, are almost constant, again as ex-
pected. Furthermore, the widths, Γ, are expected to fall
off as 1/(n∗)3, where n∗ is the effective quantum number,
n∗ = n− µnl, and this is seen to indeed be the case. Us-
ing these Fano parameters, the phases and time delays,
in the neighborhoods of the resonances, are depicted in
Fig. 3 along with the phases and time delays calculated
directly.

As seen from Fig. 3, the phases and time delays pre-
dicted using Eqs. (5) and (6) and the Fano parameters
for the resonances agree reasonably well with these quan-
tities calculated directly. The variation of the phases
across the resonances shows excellent qualitative agree-
ment and pretty good quantitative agreement as well.
And the same is true for the resonance profile for the
time delay, including both the positive maximum below
the resonance energy, and the deep negative time delay
spike above the resonance energy; the facts that the res-
onance exhibits negative time delay, and that it occurs
above the resonance energy since the Fano q-parameter

is negative, are strong indicators that Eq. (6) includes
the essential physics of the process.

From these results, seen in close-up in Fig. 3, it is clear
that the WES time delay increases with principal quan-
tum number, n, both the positive rise and (particularly)
the negative magnitude which reaches the picosecond
range for the 2s → 6p resonance. This might not seem
very large, but it is three orders of magnitudes larger than
time delays that have been measured in non-resonance
regions [6, 7]. In any case, this is no accident and can
be easily explained using Eq. (6) which shows that time
delay include an overall factor of 1/Γ, where Γ is the
resonance width. In a Rydberg series of resonances, as
long as there no spectator Auger channels, which is the
case for the Ne 2s → np resonance series, the widths
decrease, with increasing n, as 1/(n∗)3, n∗ being the ef-
fective quantum number defined as nµ, where µ is the
quantum defect; this is a well-known result of quantum
defect theory [46, 47]. Thus, the WES time delay should
increase with increasing n as (n∗)3, which is exactly what
is seen in Fig. 3. As a consequence, it is evident that the
time delay must diverge as n → ∞. And, this must be
true, not only for the particular series studied here, but
for any Rydberg series of resonances where are no spec-
tator Augers so that the resonance width tends to zero
at the series limit.

Since the resonances scrutinized above are all roughly
the same shape, it is not surprising that if Eq. (6) fits
one of them, it is likely to fit them all, i.e., going along
the series is not as stringent a test of Eq. (6) as we would
like. To try a rather different shape, along with attempt-
ing to understand the importance of including all relevant
channels in the calculation, a truncated RRPA+RMQDT
study was performed. Specifically, only a single bound-
to-continuum channel (2p3/2 → ǫd5/2) was coupled to
two bound-to-bound channels (2s1/2 → np3/2, np1/2).
Fig. 4 shows the autoionization resonances for such a 3-
channel study. Across each resonance, the phase changes
by radians and the time delay in the vicinity of each res-
onance is positive, similar to a pure Breit-Wigner case,
but very different from the full 7-channel results for both
the time delay and the phase. However, these are not
Breit-Wigner resonances; the cross sections (not shown)
are rather asymmetric, having values of q of about −2.0.
But, since η = 0, according to Eq. (6), the time de-
lay cannot be negative. Looking at the 2s → 3p res-
onance as an example, shown in Fig. 5, this is exactly
what is seen. It is also quite clear that the 3-channel
time delay and phase results are dramatically different
from the 7-channel, thereby demonstrating the impor-
tance of including all of the relevant channels in the cal-
culation. Also shown is the magnified time delay across
the 2s → 3p resonance.

In any case, to continue with the 3-channel case as a
testing ground for the model based on the Fano parame-
ters, presented in Fig. 5 is the 3-channel WES time delay
in the vicinity of the 2s → 3p resonance obtained from
Eq. (9). Both the directly calculated RRPA-RMQDT
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FIG. 3: (color online) Calculated 7-channel 2p (spin-unresolved) dipole photoionization phases (left curves) and WES time
delays (right curves) in the vicinity of the 2s → np autoionizing resonances showing the RMQDT results (solid line) and the
fits using Fano parameters given in Table I (dashed lines).
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FIG. 4: (color online) WES time delay for the 2p3/2 → ǫd5/2

photoionization channel (black curve, left scale) and phase
(blue curve, right scale) in the 2s → np autoionization res-
onance region obtained from the 3-channel RRPA-RMQDT
calculation described in the text.

FIG. 5: (color online) WES time delay is the region
of the 2s → 3p resonance resulting from the 3-channel
RRPA+RMQDT calculation, as described in the text (black
line) along with the result of Eq.(10) using the fitted Fano
parameters (red dashes).

results and the results of Eq. (9) using the Fano pa-
rameters are shown and it is clear that the agreement
between them is excellent. This shows that the physics
of the WES time delay is embodied in Eq. (6) in this case
as well.

IV. SUMMARY AND CONCLUSIONS

The Wigner-Eisenbud-Smith photoionization time de-
lay has been studied in the region of the 2s → np au-
toionization resonances in Ne. The results show a time
delay spectrum that has positive and negative compo-
nents across each resonance and that the magnitudes
of both the positive and negative components increase
with increasing principle quantum number, n. It was
also found that, in the neighborhoods of the resonances,
the size of the time delays, both positive and negative,
could be many orders of magnitude larger than the times
delays measured in nonresonant regions, picoseconds vs.
attoseconds.

A model based on the Fano parametrization of the res-
onance cross section has been developed using the reso-
nance parameters q, Γ, and ρ2, and the model results are
in reasonable agreement with the phases and time delays
calculated directly using the combined RMQDT-RRPA
methodology. From this model it was determined that for
resonances where ρ2 = 1 (a single continuum channel),
the time delay can only be positive; the Breit-Wigner case
is in this category. But, for ρ2 < 1, the parametric model
shows that time delay will have an excursion to negative
values and the location of the negative values, at energies
higher or lower than the resonance position, will depend
upon the sign of the parameter q. It is also noted that,
for cases like Ne 2s → np resonances, where there are no
spectator Auger channels, the widths decrease as 1/(n∗)3

with increasing n, n∗ being the effective quantum num-
ber, n−µ, where µ is the quantum defect. Thus, in such a
case, the lifetime of the resonances increase as (n∗)3 and,
from Eq. (6), the time delay increases as (n∗)3 as well.
As a consequence, the time delay, both the positive and
native parts, become infinite in the limit of n → ∞. As
a corollary, since quantum defect theory tells us that the
time delay is continuous across the ionization threshold,
the WES threshold time delay in the 2s ionization chan-
nels must also diverge at threshold, a fact well-known
from other considerations [23]. Finally, we note that a
similar model has been proposed for two-photon XUV-IR
ionization [50] in which the Fano q parameter is replaced
by a complex quantity.
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