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We investigate the possibility of forming achiral knottings of polyhedral (3-connected) graphs

whose minimal embeddings lie in the genus-one torus. Various analyses to show that all examples

are chiral. This result suggests a simple route to forming chiral molecules via templating on a

toroidal substrate.

I. Introduction

The interplay between structural chemistry, graph theory and
knot theory is a rich area for chemists and mathematicians
alike. The founder of topology, Johann Listing, noted the
possibility of chiral knots in 1847;1 a year later Pasteur
published his landmark paper on the optical activity of
ammonium tartrate crystals. Indeed, knot theory began
following early studies on molecular isomerism. More
recently, the investigation of chirality and knotting in organic
molecules and DNA complexes using graph theoretical
techniques has led to a number of fruitful results. In particular,
chemists now speak of topological chirality, characterised by
non-superimposable 3D mirror images of graphs among all
possible embeddings of the graph that preserve ambient
isotopy.2

Entangled (and, more specifically knotted) graphs or nets
have generated considerable interest in synthetic organic
chemistry.2–12 More recently, the possibility of entanglement
and knotting has been raised in extended framework
coordination polymer materials.13 This paper describes a
strong interplay between tangled nets and the notion of
chirality. We look at simple graphs whose topologies are those
of the edges of polyhedra, such as the network of edges in an
octahedron or icosahedron. (We define these ‘polyhedral
graphs’ more precisely below.)

The simplest realisations of polyhedral graph topologies in
space form a network of edges that can be smoothly deformed
to reticulate a sphere. Many of these cases are achiral; for
example among the edge-graphs of the 5 Platonic and 13
Archimedean polyhedra, only the snub cube and the snub
dodecahedron are (topologically) chiral.14 We can however,
tangle the network, so that it remains topologically polyhedral,
but no longer reticulates a sphere. The simplest entanglements
reticulate the donut-shaped torus rather than the sphere. To
our surprise, we have failed to generate a single example of a
toroidal polyhedral graph that is achiral. We conjecture here
that all toroidal entanglements of polyhedral graphs are chiral.

The conjecture is proven provided the entanglement contains a
knot or a link.
For convenience here, we refer to the family of embeddings

of a graph that preserve ambient isotopy – viz. all possible
realisations of the graph can be deformed into each other
without passing edges through each other – as isotopes. For a
given graph, there exist an unlimited number of distinct
isotopes, partially characterised by the presence of distinct
families of knots and links within minors of the graph.
(The minor of a graph results when vertices are removed,
along with the edges that connect to them, or if edges are
deleted, or contracted so that their endpoints merge.) We
have recently suggested a ranked enumeration schema for
isotopes based on embeddings of the isotope within
orientable 2-manifolds of increasing topological complexity.15

We describe the genus of the isotope as being equal to that of
the (topologically) simplest orientable manifold that can be
reticulated by the isotope such that no disjoint edges in
the isotope cross in the manifold, also referred to as the
‘minimal embedding’ of the isotope. That approach is
particularly suited to the enumeration of polyhedral graphs,
i.e. 3-connected planar simple graphs.16 A 3-connected graph
is one that can have no fewer than three vertices
(and attendant edges) removed before it forms two or more
disconnected components. (We note in passing that if the
connectivity of the graph is larger than three, it is also
3-connected.) A simple graph is one in which there is a
maximum of one edge between any pair of vertices; while a
planar graph is one that can be embedded in the plane
(or equivalently the sphere) without edge crossings. The
simplest – unknotted – embedding of finite polyhedral graphs
is in the 2D sphere, S2. Higher-order isotopes embed in
the genus-one torus (the donut), the genus-two torus
(the ‘bitorus’), etc. A preliminary account of this approach
has been published recently17 and a fuller account, dealing
with genus-one toroidal embeddings of the tetrahedral,
octahedral and cube graphs, is in preparation.15

Here we focus on embedded graphs that result from
reticulations of the torus by polyhedral graphs, embedded in
3-space in the standard manner (as a donut). We consider
only those isotopes that cannot be realised by spherical
reticulations; we call these ‘toroidal isotopes’ and describe
the toroidal reticulation as a ‘minimal embedding’.
The tetrahedral graph is the simplest polyhedral

graph. Evidently, the standard embedding of the unknotted

Dept of Applied Mathematics, Research School of Physical Sciences,
Australian National University, Canberra, A.C.T. 0200, Australia.
E-mail: stephen.hyde@anu.edu.au
w Electronic supplementary information (ESI) available: Discussion of
toroidal reticulation: Fig. 1: Film 1. Selected frames of the computer
animation showing the formation of a toroidal isotope (bottom right)
from its universal cover (top left). See DOI: 10.1039/b907338h

This journal is !c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009 New J. Chem., 2009, 33, 2107–2113 | 2107

PAPER www.rsc.org/njc | New Journal of Chemistry



tetrahedral graph is derived from the edges of the
‘spherical tetrahedron’ in S2, Fig. 1. An infinite number of
toroidal tetrahedral graphs are possible. The simplest example
contains a single trefoil knot as a subgraph, as shown in Fig. 1.
The trefoil winds around the two fundamental cycles of the
torus three times in one direction and twice in the other.
We therefore associate the trefoil with a torus winding of
homotopy {3, 2} or {2, 3} (and negatives thereof). (A visualisation
of the relationship between torus knots and their homotopy
type is available on the web.18) In common with all torus
knots, the trefoil is chiral.19 To determine whether this
tetrahedron embedding is chiral, we use Kauffman’s
topological invariant that consists of all cycles in the knotted
graph; if this contains only chirally knotted or linked cycles
(of the same hand), chirality of the isotope is assured.20 The
tetrahedral graph contains seven distinct cycles, labelled
according to Fig. 1 ABCA, ACDA, ABDA, BCDB, ABCDA,
ACBDA and ABDCA. Among those cycles, six are trivial
knots and one (ABDCA) is a trefoil, showing that this
tetrahedral isotope is indeed chiral.

II. The universal cover of toroidal isotopes

Toroidal isotopes can be ‘unrolled’ into the universal cover of
the torus, the Euclidean plane, E2. The universal cover offers a
simple route to construction of toroidal isotopes containing

specified knots – a tool that we shall use below to search for
achiral toroidal isotopes. Rings or cycles in the graph can be
deduced from the universal cover, as follows: ‘Null homotopic’
cycles on the torus map to cycles in the cover. Alternatively,
cycles that form collars around the torus with non-trivial
(non-null) homotopies are found by traversing edges in the
cover across unit cells. Any path from a vertex to its image in
an adjacent cell (e.g. between matching vertices of any colour in
Fig. 3, 7 and 8) is a non-null homotopic cycle whose homotopy
type is given by the vector (p,q) linking the sites. A single copy of
the torus rolls into a single unit cell of the 2-periodic pattern of
edges of the isotope in E2; additional unit cells are generated by
further unrolling of the torus. Smallest lattice vectors a, b of the
periodic pattern correspond to the shortest loops around the
pair of distinct cycles (of meridian and longditude) in the torus,
related to the generators of the torus’ fundamental group. The
procedure is illustrated by a simple animation contained in the
ESI.w An example of the universal cover of the simplest toroidal
tetrahedral isotope is illustrated in Fig. 2.
In the universal cover, cycles in the graph that wind around

those two fundamental cycles {p, q} times respectively can be
represented by a vector (p, q) with respect to the axes generated
by the basis of the a and b vectors. When p and q are coprime
and of size at least 2, the resulting loop is a torus knot and thus
is necessarily chiral. If p and q have a common factor k, then a
link with k components results. These torus links are also
chiral, for all cases except the Hopf link, which contains a pair
of loops of homotopy type {"1,"1}.
Enumeration of numerous tangled toroidal embeddings of

tetrahedra, octahedra and cube graphs by us have failed to
produce a single example of an achiral toroidal isotope.15,17

Those failures motivated us to attempt to prove that all
toroidal isotopes of polyhedral graphs are chiral, as follows.
We use Kauffman’s topological invariant,20 which for

achiral isotopes requires that every chiral cycle within the
isotope must be paired with an equivalent cycles of opposite
hand. Our proof that minimally toroidal polyhedral isotopes
are chiral relies on a conjecture that there are no genus-one
entanglement modes of a polyhedral graph that reticulate a
torus other than those containing knots or links. We note here
that other entanglement modes free of knots or links can exist

Fig. 1 (a) The unknotted tetrahedral graph, which embeds in the 2D

sphere, S2. (b) The simplest knotted tetrahedron contains a single

trefoil (ABCDCA).

Fig. 2 (a) A part of the universal cover of the simplest knotted

tetrahedral graph. The graph embeds in the torus by gluing up a single

unit cell of the universal cover, joining edges defined by lattice vectors,

to form the pattern shown in Fig. 1(b). (b) The resulting embedding in

three-dimensional space, E3.

Fig. 3 A part of the universal covers of simplest graphs containing

a pair of chiral trefoils forming achiral toroidal isotopes:

(a) {2, 3}# {2,#3} and (b) {2, 3}# {3,#2} homotopy-type trefoils,

i.e. left- and right-handed trefoil knots. The enantiomers are

distinguished by the full (brown) and dashed (blue) lines.
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within isotopes of genus two and higher, such as the examples
in ref. 21, however none of these more exotic species of
entanglement have been found for genus one.

Since we consider only polyhedral isotopes which are
minimally embedded on the torus, by the above conjecture,
we require that the isotope contain a (torus) knot or link.
It is known that such knots and links are chiral, except for the
Hopf link. Achiral isotopes which contain chiral knots or links
necessarily contain their chiral enantiomeric partners. We
show by construction that such isotopes cannot be polyhedral,
as their graph cannot be embedded in the plane. A separate
argument in Section V also prohibits isotopes containing Hopf
links. These arguments logically consist of two parts: firstly the
graph minors containing just the relevant knots or links are
shown to be non-planar, then the general case of any graph
containing these minors is shown to be non-planar through an
application of Kuratowski’s theorem (Section III).

III. Toroidal isotopes composed of gemini pairs
of trefoil knots

An obvious route to construction of a potentially achiral toroidal
isotope is to combine pairs of opposite-handed trefoil knots,
giving a graph whose vertices correspond to the intersections of
the loops. As each trefoil is chiral, such a combination will involve
a trefoil with homotopy {2, 3}, coupled with the opposite handed
knot with homotopy {2,#3} or {3,#2}. We call this pairing a
gemini pair of knots and denote it {2, 3}# {2,#3} and
{2, 3}# {3,#2}. These two combinations of homotopy types
account for all pairs of opposite-handed trefoils, as a {2, 3} trefoil
is ambient isotopic to a {3, 2} trefoil, etc.19

Consider an isotope containing only these pairs of gemini
trefoils. It turns out that this graph topology is non-planar so
it cannot be a polyhedral graph. The concept of graph
planarity depends only on the graph topology rather than its
embedding in space; a planar graph is one that can be drawn in
the plane (or, equivalently, the sphere) without edge-crossings;
a non-planar-graph cannot. Therefore, planar graphs can be
realised by spherical isotopes whereas all isotopes of non-
planar graphs require toroidal or higher genus embeddings.
Non-planarity can be shown by considering the universal
cover, in which the resulting graphs are (4, 4) tilings of E2 i.e.
containing four quadrilaterals around each vertex. Two
relative orientations are possible, giving two distinct isotopes
(embedded graphs): pairs of knots with homotopy types
{2, 3}# {2,#3} (isotope A) and {2, 3}# {3,#2} (isotope B),
illustrated in Fig. 3. (Other enantiomeric trefoil pairs are
equivalent to one of these cases by symmetry.) These universal
covers wrap onto the standard torus embedding in E3 to give
achiral toroidal isotopes, shown in Fig. 4. But are they planar?
(The wrapping process for isotope B from the universal cover
to the embedded graph can be found in the ESI.w)

We can rule out the possibility of a graph being planar – and
hence polyhedral – as follows. Suppose it is planar, in which
case it can be drawn on a sphere, generating F faces from its E
edges and V vertices. We can then apply Euler’s Theorem to
the reticulation.14

V # E + F = 2

Dividing by F, we have

n

z
# n

2
þ 1 ¼ 2

F

where V
F ¼ n

z and
E
F ¼ n

2 and z, n denote the average degree of
each vertex and the average polygonal (cycle) size of the faces
in the spherical reticulation. These relations result since each
vertex is shared between z faces, each edge between two faces
and faces are polygons of size n.
Since each vertex in isotopes A and B has four neighbours,

the degree of our graph is 4 (z = 4) and

n ¼ 4# 8

F
:

The faces must therefore obey the relation n o 4. Since this
condition holds if the graph can be embedded on a topological
sphere, a 2-manifold of positive Gaussian curvature, we call
this for convenience the positive curvature condition.
Since neither of our isotopes with gemini pairs of trefoils

contain cycles which can be found with less than four edges,
they violate the positive curvature condition. Therefore
neither of these achiral isotopes can be unknotted to form
polyhedral graphs and they lie outside the class of graphs of
interest, since the presence of trefoil enantiomers enforces
non-planarity.
Now that the graphs of these gemini trefoil isotopes have

been shown to be non-planar, we turn our attention to larger
graphs, which contain these non-planar graphs within them as
graph minors. This is done using Kuratowski’s Theorem,2,19,22

which adopts a different topological approach to the planarity
of graphs. The theorem identifies essential features not present
in planar graphs, which includes all polyhedral graphs. It states
that any graph is non-planar if and only if it contains either the
complete graph with five vertices (K5) or the bipartite graph
with six vertices (K3,3) (or both) as a minor.
Since isotopes A and B have been shown above to possess

insufficiently small cycles to reticulate S2, they are non-planar.
By Kuratowski’s Theorem,22 they must both contain one of
the ‘forbidden’ graphs as a minor. In fact, both A and B
contain K3,3 and K5 as minors (see, e.g. Fig. 5). It is therefore
certain that any graphs related to the A and B isotopes by
appending extra edges and/or vertices are non-planar, since
the forbidden graph minor remains intact. This proves that the

Fig. 4 Toroidal embeddings of the two gemini trefoil isotopes,

corresponding to the universal covers shown in Fig. 3. The colours

of vertices and edges are inherited from Fig. 3: each trefoil enantiomer

is coloured by blue or brown edges.
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presence of a non-planar component induces non-planarity in
the larger isotope. The same argument is used through the next
two sections: the graphs containing just the enantiomeric
knots or links is shown to be non-planar (and so non-
polyhedral), a result which generalises to any isotope which
contains them via this use of Kuratowski’s theorem.

IV. Toroidal isotopes containing a k{p, q} torus
link

A similar argument to that presented in section III shows that
all gemini pairs of torus knots and torus links containing chiral
components also fail to be polyhedral graphs. Any isotope
containing a torus link composed of k components of
homotopy type {p, q} (p and q co-prime), denoted k{p, q},
must also contain a gemini partner of type k{p,#q} or
k{#q, p} in order to be achiral. We show below that all such
isotopes share the characteristic of the gemini trefoil isotope,
namely an absence of cycles traversing fewer than four edges.
They are thus also prohibited from being polyhedral graphs
since they are necessarily non-planar.

Since knots can be considered to be ‘one-component links’
we include their analysis by allowing k to equal one. We
consider separately the isotopes generated by geodesics of
the form k{p, q}# k{p,#q} and k{p, q}# k{#q, p}.

A Graph generated by geodesics k{p, q}#k{p,#q}

In the minimal isotope containing only the vertices and edges
generated by k{p, q}# k{p,#q}, consider the length of the
smallest cycles involving each vertex. Viewed in the universal
cover, these cycles are either nullhomotopic cycles of length
four (since the faces in the torus and its universal cover
are quadrilaterals) or else are paths linking translationally
distinct copies of a vertex. (The face size is four, so a
null-homotopic closed path must also be of length at least
four edges.) The path from any vertex to its (a, b) translation
is composed of M edges in the direction of (p, q) and N
edges in the direction of (p,#q). These vectors are ðp; qÞ

2kpq and
ðp; #qÞ
2kpq , i.e.

M
ðp; qÞ
2kpq

þN
ðp; # qÞ
2kpq

¼ ða; bÞ;

and via rearrangement

M þN

2kq
;
M #N

2kp

! "
¼ ða; bÞ;

so

(|M + N|, |M # N|) = 2k(|aq|, |bp|).

Combining this equation with the triangle inequality gives
both:

jMj þjNj ( jM þNj ¼ 2kjaqj;
jMj þjNj ( jM #Nj ¼ 2kjbpj:

#

Thus

|M| + |N| Z 2kmax(|aq|, |bp|).

In the case of a pair of gemini knots, where k = 1, |p| and |q|
are both at least 2 (to form a knot) and (a, b) a (0, 0) so the
number of edges traversed, |M| + |N| is at least four. In the
case of a link, where k Z 2, |p| and |q| are both at least one
(in order to be interlinked), and again (a, b) a (0, 0) so the
number of edges traversed, |M| + |N| is also at least four.
Thus there is no cycle in the isotope containing less than four
edges. It follows that all isotopes which contain these specific
gemini pairs violate the positive curvature condition hence
they cannot be planar, and are not polyhedral graphs.

B Graph generated by geodesics k{p, q}#k{#q, p}

Gemini pairs can also result from a minimal isotope containing
only k{p, q}# k{#q, p}. Again consider the path from any
vertex to its (a, b) translation, composed of M edges in the
direction of (p, q) andN edges in the direction of (#q, p). These
vectors are ðp; qÞ

kðp2þq2Þ and
ð#q; pÞ
kðp2þq2Þ. Thus

M
ðp; qÞ

kðp2 þ q2Þ
þN

ð#q; pÞ
kðp2 þ q2Þ

¼ ða; bÞ;

so

1

kðp2 þ q2Þ
p #q
q p

$ %
M
N

$ %
¼ a

b

$ %
:

Rearranging,

M
N

$ %
¼ kðp2 þ q2Þ

p
p2þq2

q
p2þq2

#q
p2þq2

p
p2þq2

" #
a
b

$ %
:

Observing that the square matrix is a rotation matrix, and thus
leaves vector length unchanged:

||(M, N)|| = k(p2 + q2)||(a, b)||,

where ||(x, y)|| denotes the length of the vector (x, y). Now

jMj þjNj (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj2þjNj2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þN2

p
¼ jjðM; NÞjj

Since (a, b) a (0, 0), ||(a, b)|| Z 1, so that

|M| + |N| Z k(p2 + q2) Z 4

for all k, p and q under consideration. Thus there is no cycle in
the isotope containing less than four edges, and any isotope
which contains these gemini pairs violates the positive
curvature constraint and is not a polyhedral graph.

Fig. 5 (a) K5 as a graph minor of an isotope A, shown in Fig. 3(a) and

4(a), in the universal cover. Vertices of K5 formed by the edge-

contraction and vertex-deletion of this 2-periodic graph are assigned

distinct colours. (b) K3,3 is also a minor of isotope A.
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Consider, for example, an isotope with a gemini pair of
Whitehead links (the unique two component link with
five crossings), with homotopies 2{1, 2}# 2{#1, 2} and
2{1, 2}# 2{#2, 1}, shown in Fig. 6, whose universal cover is
shown in Fig. 7. The diagrams verify that even for these simple
isotopes, no cycle shorter than length four exists, whether
null-homotopic or of non-trivial homotopy.

V. Toroidal isotopes containing achiral Hopf links

Thus far, the construction of achiral toroidal graph
embeddings involves gemini pairs of enantiomers, covering
all examples of graphs with minors consisting of chiral knots
or links on the torus. Just one achiral example of non-trivial
toroidal knots or links exists: the Hopf link.

Suppose we have a polyhedral graph that contains no
tangling more complex than a Hopf link, i.e. a pair of loops
of homotopy type (1, 1), viz. {2, 2}. Since the graph must be
simple to be polyhedral, rather than a multigraph, it must
contain at least six vertices (three per loop). Since it is also by
definition 3-connected, it can be drawn as a twisted ladder,
with at least three rungs (Fig. 9): any fewer rungs would allow
splitting of the ladder into a pair of disconnected loops by
removal of two vertices. However Simon has proven that a
twisted ladder of this type is chiral provided the number of

rungs exceeds two,23 so embedded polyhedral graphs with a
Hopf link as a minor must contain a chiral component. Recall
that we are searching for achiral embeddings. To ensure an
achiral isotope, we must either include a second twisted ladder
enantiomeric to the first, as in Fig. 8, or alternatively add extra
rungs to the Hopf link ‘rails’, giving both right- and left-handed
twisted ladders as graph minors, as in Fig. 9. The first case can
be readily dismissed since there is no cycle of length shorter than
four in Fig. 8, null-homotopic or otherwise. It therefore violates
the positive curvature condition and the underlying graph is
non-planar, so the isotope is not polyhedral.

Fig. 6 Two isotopes, each built from a left- and a right- handed pair

of Whitehead links, i.e. (a) 2{1, 2}# 2{#1, 2} and (b)

2{1, 2}# 2{#2, 1}. Each chiral component is coloured either brown

or blue in both isotopes. Their universal covers are shown in Fig. 7.

Fig. 7 A part of the universal covers of (a) 2{1, 2}# 2{#1, 2} and (b)

2{1, 2}# 2{#2, 1} isotopes, i.e. left- and right-handed Whitehead

links. The shortest non-null-homotopic cycles are of lengths four

and six, respectively (e.g. walks between similarly coloured vertices.).

The link enantiomers are distinguished by the full (brown) and dashed

(blue) lines.

Fig. 8 (a) An isotope composed of two ‘orthogonal’ sets of Hopf

links, with homotopies 2{1, 1}# 2{1,#1} shown in blue and brown,

respectively. (b) A part of the universal cover of the isotope; each set of

Hopf links is shown by blue (dashed) and brown (full) lines, with

vertex colours corresponding to image (a). From either image it can be

determined that there is no cycle shorter than length four, so any graph

containing these elements is non-planar.

Fig. 9 (a) The simplest polyhedral graph embedding with a single

Hopf link: the chiral three-rung twisted ladder (an isotope of the

triangular prism). (b) Alternative embedding of the isotope in (a).

(c) The three-rung ladder enantiomeric to (a) and (b). (d) Alternative

embedding of isotope (c) with Hopf link presentation common to that

of (b).
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The second possibility, consisting of an enantiomeric pair
of twisted ladders contained on a single pair of Hopf link
‘rails’ – an inclusion which minimally requires one additional
rung – can be addressed by considering the planar embedding
of the graph of such an isotope. The chiral component of one
hand must be drawn as two cycles joined by three rungs, as per
Fig. 10. Since the graph is assumed to be planar, in this planar
embedding the rungs must not cross, so assigning an arbitrary
orientation to one component of the Hopf link induces an
orientation in the other, through the rung connectivity.

Any reflection of this component (required to complete the
gemini pair) interchanges the linking of these two oriented
cycles, again defined by rung connectivity. However there is no
way to interchange the orientation of one of these cycles
without inducing rung crossings, even if the cycles themselves
are interchanged, as shown in Fig. 10.

Thus any isotope which contains an enantiomeric pair of
twisted ladders with at least three rungs on the same or
different rails cannot have a planar embedding and cannot
be a polyhedral graph. So even the presence of the simplest
toroidal entanglement mode in an embedding of a polyhedral
graph – a mere Hopf link – is sufficient to induce chirality in
the resulting toroidal isotope.

VI. Conclusion

This work has been motivated by earlier enumerations of
toroidal isotopes of the cube17 and a more extensive enumera-
tion of toroidal tetrahedral, cube and octahedral isotopes.15

Here, we have explored the possibility of forming achiral
embedded graphs on the torus (‘toroidal isotopes’) formed
from any polyhedral graph. It turns out that all such achiral
isotopes containing knots or links fail to be polyhedral graphs,
as they are either nonplanar or not 3-connected. This finding is
analogous to the simpler well-known result for knots and links
on the torus: In those cases, all knots and links with more
than three crossings are chiral. Here we have shown that all
polyhedral (simple, planar, 3-connected) graphs that contain
torus knots or links are chiral.

The result is valid for the most general form of ambient
isotopic deformations of a graph – a class that may be broader
than definitions admitted by chemical realisations of these
graphs.2 Kauffman introduced rigid-vertex graphs, whose
ambient isotopic deformations preserve the edge ordering
around a vertex in a local 2-manifold embedding.20 It

follows that all toroidal embeddings of planar, 3-connected
rigid-vertex graphs are also chiral.
It is of interest in this context to deduce examples of toroidal

isotopes that violate the requirements of polyhedral graphs,
showing that the theorem cannot be broadened beyond
polyhedral graphs. Recall that three features are essential to
polyhedral graphs: they must be planar, three-connected and
simple.
We have encountered many examples of 3-connected,

simple graphs that form achiral toroidal isotopes, but have
no planar embedding. An example is the enantiomeric pair of
trefoils illustrated in Fig. 5.
Relaxing the 3-connectivity condition to 2-connectivity

allows an ‘almost polyhedral’ graph with eight vertices of
degree three, that embeds achirally on the torus to give a
single Hopf link, shown in Fig. 11.
Examples of achiral 3-connected, planar multigraphs can be

found whose minimal embedding is in the torus. A simple case
is illustrated in Fig. 12. Like the previous example, this isotope
contains a Hopf link. This achiral toroidal isotope is a
sub-graph of the example in Fig. 11, retaining only the four
vertices connecting distinct loops of the Hopf link. This
isotope demonstrates the necessity of the condition of
simplicity to induce chirality.
Lastly, note that it is easy to generate achiral examples of

knotted polyhedral graphs by choosing 2D embeddings of
multi-handled tori. For example, achiral examples of bitorus
(genus 2) isotopes are generated by placing mirror images
of knotted, chiral toroidal isotopes on each handle of the
bitorus.
Note that our proof has considered all toroidal isotopes of

polyhedral graphs containing knots and/or links. Certainly,
any toroidal polyhedral graph must contain an entanglement
of some kind, since otherwise it would reticulate the sphere
rather than the torus. (Alternatively, we could use this minimal
embedding constraint to define entangled polyhedral graphs.)
We know, however, that entanglements can occur without the
presence of knots or links, such as ravels, that tangle an
isotope without entangling individual cycles.21 The simplest
ravels that we can construct embed in the genus-two bitorus.
Other higher-order entanglements are also likely to occur;
we doubt that any of these can form genus-one toroidal
reticulations. We therefore conjecture that all toroidal isotopes
are chiral.

Fig. 10 The planar embedding of both handed three-rung twisted

ladders shown in Fig. 9. For any orientation of the Hopf link ‘rails’, at

least one of the left- or right-handed components must have an

unremovable crossing.

Fig. 11 (a) Universal cover of an 8-vertex, degree-3 achiral toroidal

isotope of a (b) planar 2-connected graph. (c) An embedding of

the isotope in E3 that contains a mirror plane (containing the square

face 1546).
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The implications of this result for chemistry are potentially
profound. We give just two examples here. First, just as
polymeric chains inevitably knot as their length grows in
solution,24 entangled structures are likely to emerge during
synthesis of polyhedral graphs that contain extended graph
edges, such as DNA complexes whose helices define the edges
of polyhedra.11 The ’simplest’ entanglements, assembled most
readily apart from the conventional (untangled) polyhedral
forms are likely to be toroidal; it is therefore of interest to note
that these structures are chiral (in addition to possible chirality
induced by the individual DNA strands). Second, many
carcerands can be represented as polyhedral graphs (provided
they are three-connected and simple), since they typically
surround a central guest species and are therefore topologi-
cally planar. Synthesis of these molecules via templating on a
substrate that it topologically toroidal, such as any simple
unicyclic molecule, will then induce an entangled carcerand
that is necessarily topologically chiral. Conversely, polyhedral
host structures that encapsulate annular or toroidal guests are
necessarily chiral.
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Fig. 12 (a) The universal cover of an achiral toroidal isotope of a

(b) multigraph that is (c) planar and three-connected.
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