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Abstract:

We demonstrate the usefulness of two-dimensional hyperbolic geometry as a tool to
generate three-dimensional Euclidean (E3) networks. The technique involves projection
from tilings of the hyperbolic plane (H2) onto three-periodic minimal surfaces, embedded
in E3.  Given the extraordinary wealth of symmetries commensurate with H2, we can
generate networks in E3 that are difficult to construct otherwise. In particular, we form
four-, five- and seven-connected (E3) nets containing three- and five-rings, viz. (3,7),
(5,4) and (5,5) tilings in H2. These examples are of fundamental interest, as they present
“topological symmetries” that are incompatible with the isometries of E3.
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Introduction:

The motivation for this work lies in our poor knowledge of networks in three-
dimensional Euclidean space (E3). The nature of E3 presents obstacles to net formation
that are not yet well understood. Those obstacles are in part geometric. Thus, for
example, a locally preferred packing configuration corresponding to tetrahedrally close-
packed arrangements of vertices is unrealizable in E3, but accessible in 3D elliptic space.
In a series of papers, Sadoc, Mosseri and Rivier have argued that many atomic
configurations in glasses and alloys (particularly Frank-Kasper phases and their duals)
are frustrated attempts to decurve those elliptic configurations, involving  networks of
disclinations, and thereby mapping the elliptic geometries back to E3 (ref. 1). A number of
conjectures concerning accessible ring-sizes in four-connected nets have been made by
chemists that remain intriguing yet unproven2. It is possible that there are, in addition,
topological obstacles to net formation in E3, where certain network topologies are
unrealizable with any geometry in flat 3D space. Despite the corpus of data on networks
gathered by solid state chemists, it is fair to state that we remain in a state of profound
ignorance of the variety of nets realizable in E3. Substantial progress in experimental
determination of structures to high resolution of atomic and molecular crystals has not
been mirrored by corresponding progress in fundamental understanding of possible
structures in E3. We have not advanced much beyond empirical construction of nets,
despite advances in systematic enumeration of a restricted class of four-connected nets in
E3 (ref. 3).

It has long been recognized that crystalline networks, particularly those of low
topological vertex density (normalized to nets of unit edge length) are decorations of
triply periodic minimal surfaces, or topologically identical surfaces 4,5. Here we formalize
somewhat that construction, and focus on examples that are intractable within the
confines of conventional Euclidean crystallography. Net(work)s are constructed with
pentagonal rings and containing equivalent seven-connected vertices.

This paper offers some examples of a novel technique to construct nets ab initio. The
technique is almost exclusively confined to 2D geometry, where the third dimension of
E3 is subsumed within a parameter available to non-euclidean geometries, curvature.
Rather than working within flat 3D space (E3), we construct the unwrapped net in 2D
hyperbolic space, H2 and then project H2 onto E3, via triply periodic minimal surfaces.

Construction of 3D euclidean nets from the hyperbolic plane:

The approach involves the formation of a net in its universal cover. There is a simple
analogy to cylindrical nets, well developed to characterise carbon tubule structures. In
that case, the sp2 graphite net tiles a cylinder. The (surface averaged) Gaussian curvature
of a cylinder ( or any extended rod-shaped surface) is zero, and the cylinder is Euclidean.
Its universal cover is the Euclidean plane (E2). The graphite net can be realized as a
regular tiling of E2, with identical vertices, all belonging to three hexagonal rings; we
denote the net by a modified Schläfli symbol, (6,3). (The regular form of (6,3), with
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symmetrically identical hexagonal faces, edges and vertices, is denoted {6,3}.) Tubule
nets can be generated by projecting the (6,3) net onto the cylinder, formed by gluing
parallel lines traced on E2. The infinite (6,3) pattern in the unbounded Euclidean plane,
E2, is thus an infinite-sheeted cover of the cylindrical tiling. A realisable carbon tubule
structure derived from graphite corresponds to the identification of any 1D lattice on the
(6,3) net (Figure 1). The lattice vector defines an equatorial loop around the cylinder and
the cylinder dimensions relative to the edge length of the (6,3) tiling. The smallest lattice
vector commensurate with the graphite net defines an achiral tubule structure, generic
examples are related to this one by a screw disclination.

          
Figure 1: Mapping {6,3} to carbon tubule nets: the graphite network is rolled gluing
ends of the equatorial lines (a). The length and orientation of that line determines the
tubule radius and chirality resp. (Tubule image courtesy of D. Tomanek.)

Generalisation of this concept allows us to systematically derive examples of a
restricted – but large – subset of all crystalline nets in E3. Those nets tile hyperbolic
surfaces, and can be embedded without altering their topology (though likely their
geometry: the edge lengths and shapes and vertex positions). The universal cover6 of
hyperbolic surfaces is the hyperbolic plane, H2, which can be considered as a multiple-
copy of the unfolded three-periodic surface, just as the Euclidean plane is the universal
cover of the cylinder. Here too, we can generate nets on three-periodic surfaces in E3, that
are crystalline three-periodic nets in E3, via tilings of H2. The nets contain surface rings,
visible in the H2 tiling and collar rings, that are the result of the projection (or gluing)
from H2 to the surface.

There is a significant extra complication in this construction, that is not present in the
cylindrical examples. That complication arises from the requirement that H2 be distorted
in order to project in onto E3. In practice, the Gaussian curvature of three-periodic
hyperbolic surfaces must vary over the surface, in contrast to the fixed (negative)
Gaussian curvature of H2. The isotropic H2 space is distorted, and a conformal group
structure imposed on H2 to allow projection onto E3. The conformal structure can be
made exact for the case of three-periodic minimal surfaces, as follows. These surfaces are
made up of asymmetric surface patches (Flächenstücke) bounded by special curves that
are intrinsic mirrors in the surface7. Those mirrors emanate from the isolated singular
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points on the minimal surface of zero Gaussian curvature, the flat points. Their type and
locations are defined by the Gauss map of the surface, used to explicitly parametrise the
surface embedding in E3.  Those curves correspond to special directions on the surface
(principal or asymptotic directions, with the exception of the gyroid) and are orthogonal
at all points except at flat points. The polygons are thus right-angled except at flat points.

We consider here only the simplest three-periodic minimal surfaces, the P and D surfaces
and the hexagonal H surface. The Gauss maps of their Flächenstücke, resident in the 2D
complex plane, C2 (derived in ref. 7) are polygons whose edges are circular arcs. The
complete surface is generated by reflection in the edges of the polygon. The Gauss map is
a conformally faithful representation of the surface geometry in E3, except at flat points
(i), where it is multiplied by the order bi of the flat point.  These polygons, with suitably
rescaled vertex angles at vertices corresponding to flat points, thus offer a convenient
conformal map for the three-periodic minimal surface geometry in its universal cover
(H2)  8.  The relevant polygons in C2 are shown in Figures 2. Note that the P and D
surfaces are intrinsically identical – only their E3 embeddings differ – so that their
Flächenstücke are indistinguishable.

     

(a) (b)

Figure 2: Complex plane representation of the Gauss map of the P and D three-periodic
minimal surfaces (a) and the H surface (b). The maps contain asymmetric tiles (shaded)
that generate the complete map by reflection in the tile edges. Flat points on the tile
edges are marked by a dot and the numeral 1, denoting that these are first-order flat
points. The P/D tile contains three vertices, the H tile four, counting the flat point along
an edge. (The open circle at the origin in (b) denotes an extra first order flat point at .)

This construction allows (in principle) an exact conformal map from H2 to the surface.
We are principally concerned with the topological structure of the nets on these surfaces,
and their geometry is later relaxed in E3, so we refrain here from explicit description of
that map (that has, in any case, yet to be explicitly determined in most cases).
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The conformal maps on H2 impose a group structure on that space, as the Flachenstücke
polygons are mirrors. The hyperbolic crystallography of these surfaces is thus a sub-
group of the (kaleidoscopic) group defined by these mirrors. The full group defines the
relevant group of the universal cover of the surface – unglued into the disc-like
hyperbolic plane, and replicated. The three-periodic minimal surface contains relations in
addition to the mirrors, defining the gluing pattern needed to stitch the surface up from H2

(identical to the gluing lines for cylinders from E2). A detailed account of this procedure
for the P and D surfaces can be found 9Those translations must be respected in any tiling
superposed on H2, to ensure the projected tiling, a net in E3, is commensurate with the
surface and contains the same translational symmetries as those of the underlying surface.
(We could relax that constraint, and allow supercells of the surface lattice; here we
neglect that possibility.) In order to reticulate the three-periodic minimal surface in a
commensurate fashion, the starting tiling in H2 is chosen to be a sub-group of the full
kaleidoscopic group of the surface.

The hyperbolic crystallography of these surfaces can be neatly described using the
orbifold notation developed by Conway and Thurston10. An orbifold contains a single
asymmetric unit of the symmetric 2D pattern, suitably compactified. The notation is
particularly useful, as it is generic to the three possible 2D non-euclidean geometries:
elliptic (e.g. point groups), parabolic or Euclidean (planar groups) and hyperbolic. There
are only four possible symmetry elements of these 2D groups: mirrors, glides, rotation
centers and translations. Each element has a symbol, and a symbol string defines the
group. For our purposes, we need to consider only orbifolds containing rotation centers
(denoted by the numeral “a”, where the rotation center defines an a-fold rotational center
and mirror lines (contributing a single “*” character per disjoint mirror circuit). Rotation

centers lying on intersections of mirror lines subtending angles of 
π
b1

,
π
b2

,... lead to the

“*b1 b2…” character string. For example, the pattern in the complex plane due to the
Gauss map of the P or D surfaces (or on the sphere, S2) contains a single triangular motif,

bounded by mirror lines intersecting at 
π
2

,
π
4

,
π
3

 (Figure 2a). The relevant orbifold symbol

string is thus *243. (Note that cyclic permutation of ordering of rotation center symbols
and mirror intersection is allowed.)

The symbol string allows direct reckoning of the characteristic of the orbifold, via the
equation:

= 2 − ci
i

∑ (1)

where ci values are associated with each character entry in the orbifold symbol (Table 1).
This characteristic coincides with the topological Euler-Poincaré characteristic, and
scales linearly with the integral Gaussian curvature of the asymmetric domain in the
relevant 2D space.  Since the spaces are of constant Gaussian curvature, the Gauss-
Bonnet theorem implies that the characteristic also scales with the area of the asymmetric
domain. If the characteristic is positive, the geometry if elliptic (e.g. spherical 2D groups,
the crystallographic point groups); zero implies Euclidean character (usual 2D planar
groups); negative characteristics are associated with hyperbolic space.
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Symmetry element Symbol cost, ci

Mirror * 1
Rotation center (cone point) a a −1

a

Mirror intersection (angle 
π
b

)
b b −1

2b

Table 1: Character strings and costs associated with 2D symmetry elements of orbifolds.
The orbifold characteristic is calculated from these costs (eq. 1). The string nomenclature
is applicable to any 2D symmetric pattern, whether it is elliptic, planar or hyperbolic.
(Crystallographic point groups are elliptic, 2D planar groups are Euclidean.)

A second, concise description of the recipe for determining the relevant kaleidoscopic
group of the universal cover of the surface is possible with the orbifold concept. Note
first that the Gauss map is defined on the unit sphere, S2, whose universal cover is the
elliptic plane. Due to the reflection symmetries of the Gauss map, the elliptic group is a
kaleidoscopic group. Symmetry editing, multiplying the order of the mirror points at
branch points (i) of the Gauss map by their order, bi, gives the relevant hyperbolic
kaleidoscopic group of the universal cover of the three-periodic minimal surface in H2.
All the surfaces considered here have exclusively first order branch points, so that the
mirror points at flat points must be doubled. The correspondence is illustrated in Table 2.

Surface Gauss map orbifold
(S2, C2)

Surface orbifold
(H2)

P, D *243 *246
H *3(1)22 *6222

Table 2: Orbifold symmetries for the P, D and H three-periodic minimal surfaces. The
surface orbifolds are simple “symmetry edits” of the orbifold of the Gauss map of the
surfaces (fig. 2).

The conformal map offers a conformally exact – but non-isometric – mapping from H2 to
the three-periodic minimal surfaces. Conformal equivalence means that all angles are
preserved between nets drawn on H2 and the projected nets drawn on the three-periodic
surfaces (in E3). The lack of isometric equivalence means that edge lengths on the nets
differ from H2 to E3. But the mapping is sufficient to construct nets in E3 with specified
2D topology from those in H2. Specific sites on H2 map to sites on the three-periodic
surfaces. An explicit transformation from H2 to C2 to E3 can be established, and will be
presented elsewhere. For now, we use the vertices and edges of the kaleidoscopic tiling of
the surface orbifold as a coordinate net. We call this net the surface atlas. The relevant
atlases in H2 for the P, D and H surfaces are shown in Figure 3.

We use a compact, conformal representation of H2, known as the Poincaré disc model.
This model allows the entire hyperbolic plane to be represented in a unit disc in the
euclidean plane, at the expense of  much foreshortening of distances while all angles in
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H2 are conserved in the Poincaré disc11. The correspondence between points on H2 and
points in E3 (via Cartesian coordinates on the three-periodic minimal surfaces) follows at
once from the identification of the H2 orbifold with the C2 orbifold of the Gauss map,
since a  constructive map from the C2 coordinates to E3 cartesian coordinates is afforded
by the Weierstrass equations defining the minimal surface geometries7.

                 

(a)                                                                         (b)

Figure 3:Surface atlases of the (a) P, D and (b) H surfaces in the Poincaré disc
representation of the hyperbolic plane. The atlas is the universal cover of the surface
with the surface orbifold symmetry. Single asymmetric units of (a) the *246 and (b)
*6222 orbifolds  are shaded black. (a) Single asymmetric tile (A), a single regular tile of
the (B) {4,6} and (C) dual {6,4} tilings on the P and D surface universal covers.

The construction leads to three-periodic nets in E3 with specified 2D ring-size n2, and
edge valency (connectivity) at each vertex, z, whose 2D Schläfli symbol is (n2,z) in
general, and  {n2,z} in some cases (with regular n2-gons) . Collar rings are invisible in the
universal cover (H2); they are not prescribed a priori. Just as for graphitic tubule nets of
distinct chirality (and screw dislocation strength), multiple nets 3D nets can be
constructed sharing the same surface rings, but displaying different collar rings. (A
lengthy introduction to our approach has been presented elsewhere12.)

We illustrate the technique with some examples of network topologies that are difficult to
realize within the context of 3D Euclidean space. In particular, we construct examples of
(3,7), (5,4) and (5,5) reticulations of the P and D surfaces. The first example is of
fundamental interest: it is the simplest hyperbolic analog of the regular close-packing
pattern of identical discs in E2 (i.e. {3,6}) and its seven-fold connectivity cannot be
symmetric in E3. The latter examples, containing pentagonal rings are also of wider
interest, due to the geometric frustration of embedding regular pentagonal patterns in E3.
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The crystallography of H2 is immensely rich compared with 2D (or 3D) Euclidean
crystallography. Any net (n2,z) can be embedded in H2 such that all vertices, edges and
rings are symmetrically equivalent (regular), to form {n2,z}. The examples we consider
here are shown in Figure 4. These regular nets {n2,z} display pure reflection symmetry:
they are decorations of the *n2z2 orbifold.

                   

(a)  (b)

(c)

Figure 4: Regular hyperbolic tilings with symmetrically identical vertices, edges and
faces; (a) {3,7} (b) {5,4} and (c) {5,5}. Single triangular domains of the relevant
kaleidoscopic orbifolds are outlined by dark edges, lying on mirror lines: (a) the *237,
(b) *245 (ignoring the tile colouring) and (c) *255 orbifolds.

Formation of Euclidean nets:
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Projections of hyperbolic tilings onto three-periodic surfaces in E3 generally requires
some symmetry reduction of the regular tiling. A common sub-group (orbifold) to the
surface orbifold and the orbifold of the regular tiling must be found. Nevertheless, despite
the incommensurability of generic n2 rings with the structure of E3 (e.g. pentagons and
heptagons), symmetric reticulations are possible. We first construct the (n2,z) nets in H2,
superposed on the relevant orbifold for the universal cover of the minimal surface. In
some cases, that superposition can be done by inspection. The construction can be done
more systematically using the following topological constraints. First, locations for
vertices and faces of the required (n2,z) net are chosen. The ring- and vertex density can
be derived using Euler’s relation, that relates the Euler characteristic, , to the number of
vertices, V , edges, E and faces, F , in the network:

=V − E + F :   (2)

F =1−
n2

2
+

n2

z
    (3)

and

V =1−
z

2
+

z

n2

   (4)

where F  and V  denote the Euler characteristic per face and vertex respectively. The
ratios of those characteristics with the characteristic per surface orbifold determines the
vertex and face density per surface orbifold.

Consider first the regular {4,6} net, or its dual {6,4}, that comprise a uninodal net in the
atlas for the P/D surfaces, and possible superposition of the (5,4) net on that tiling. A
solution is evident by inspection in the Poincaré disc model of H2; that superposition

results in a pattern of symmetry *2224, whose characteristic, from eq. 1 is equal to 
−1

8
(Figure 5). Note that a (6,4) tiling with *2224 symmetry is, in general, distorted, in
contrast to {6,4}. The geometry of single *2224 domains is not rigid, as the only

constraint on their form is the requirement that vertex angles are equal to 
π
2

, 
π
2

, 
π
2

 and

π
4

. We note that hyperbolic n-gons with fixed vertex angles have (n-3) degrees of

flexibility in H2. Domains of the *2224 tiling of H2 thus contain a single free parameter,
that can be tuned to force the regular {5,4} tiling, superposed on an irregular (6,4) tiling
(Figure 5a) and vice versa (Figure 5b).
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(a) (b)

Figure5: (a) Superposition of the regular {5,4} tiling on the irregular (6.4) tiling (with
(6) rings shaded alternately grey and white for clarity). A single *2224 quadrilateral

orbifold domain is highlighted, bounded by mirrors with vertex angles of 
π
2

,
π
2

,
π
2

 and 
π
4

.

(b) Superposition of the regular {6,4} tiling (with {6} rings shaded alternately grey and
white for clarity) on the (5,4) tiling. A single *2224 orbifold domain is highlighted.

As required, *2224 is a sub-group of both the P and D surface orbifold, *246 and the
orbifold of the regular {5,4} tiling, *245. Is a more symmetric deformation of {5,4}

allowed?  That can be established from the characteristics of these orbifolds, viz. 
−1

24
 and

−1

40
 respectively. The sub-group index follows at once from the ratios of the relevant

orbifold characteristics10. Common sub-groups to these orbifolds must have indices that

scale according to the ratio of the group characteristics: 
40

24
. The most symmetric

common sub-groups must therefore be of index 3 in *642 and 5 in *542 with

characteristic 
−1

8
, equal to that of *2224. We have therefore found a maximally

symmetric embedding of {5,4} in the P and D surfaces. It is worth pointing out that the
*2224 orbifold is precisely that of the tetragonally distorted family of P and D surfaces,
the tP and tD surfaces. That can be inferred from the Gauss maps of the tetragonal
family7 (using the algorithm outlined above.) It follows at once that a more regular
geometric embedding of the {5,4} net can be realized by projecting onto the tP and tD
surfaces. However, we consider here only the cubic reticulations.

The resulting projections on the (cubic) P and D surfaces are shown in Figure 6.
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(a) (b)

Figure 6: Projections of the {5,4} onto the (a) P and (b) D minimal surfaces according t
the superposition described in Figure 5.

We turn next to the (5,5) tiling. Here too, the superposition of an irregular (6,4) tiling on
{5,5} can be determined by inspection (Figure 7a). The arrangement of vertices and
edges of the {5,5} net relative to (6,4) provides a topological connection diagram to
reconstruct an irregular (5,5) on {6,4}, allowing projection to the P and D surfaces. We
use that map to superpose the (irregular) (5,5) tiling on the (regular) {6,4} tiling (Figure

7b). The resulting orbifold symmetry is 22*2, with characteristic 
−1

4
. This orbifold is a

sub-group of index 5 relative to the regular {5,5} tiling (*552 orbifold) and index 6
relative to the *642 surface orbifold of the P and D surfaces. Given that the ratio of

characteristics of the *552 to *642 orbifolds is 
24

20
, the sub-group index ratio of 

6

5
implies, once again, that the pattern is maximally symmetric.

The 22*2 pattern is flexible. Indeed, a specific example of the pattern contains the regular
{6,4} tiling (Figure 7c), proving that the superposition of (5,5) on {6,4} is feasible in H2.
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(a)

       

(b) (c)

Figure 7: (a) Superposition of an irregular (6,4) net on regular {5,5} tiling. The resulting
pattern has orbifold symmetry 22*2: thinner arcs lie on mirrors of the *255 pattern
characteristic of {5,5}. Edges of {5,5} are thicker arcs; edges of (6,4) are marked by dots.
Thicker lines are edges of the {5,5} net.
(b) A (5,5) net superposed on a (6,4) net, with 22*2 symmetry. Edges within a single 22*2
domain are thickened, with “2” entries denoting 2-fold rotational symmetry sites, and the
“*2” entry the intersecting of a pair of orthogonal mirrors (dotted lines). Alternate (4)
tiles are shaded to aid identification of the (6,4) tiling.
(c) The regular {6,4} tiling has a subgroup of symmetry 22*2. (b) can therefore be
deformed to give (5,5) on {6,4}.

The projections of this net onto the P and D surfaces are shown in Figure 8. Straightened
examples, with all edges geodesic in E3, are also shown. These nets exhibit a complex
and interesting structure. The projection process forms 4-sided collar rings in both cases.
The P version, which adopts a tetragonal symmetry in the straightened version, bears a
fascinating relation to stacks of intergrown, slightly distorted graphite networks (each

with 2-fold rotational symmetry), rotated by 
π
2

 with respect to each other. These layered

intergrowth are interconnected by connections surrounding a 41 screw axis, inducing an
overall chirality in the net. That chirality is evident from the orbifold decoration (Figure
7a): the bilateral symmetry of the orbifold domain has been broken, and there is an
arbitrary choice of two possible diagonal edge orientations. Chirality of the net is visible
within the hyperbolic plane pattern, an attractive feature of this technique12.
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(a) (b)

 
(c) (d)

Figure 8: Projections of {5,5} nets onto the (a) P and (c) D surfaces. (b) and (d) have
identical vertex positions to those in (a) and (c) respectively, with straightened edges.
The presence of intergrown irregular {6,3} graphite-like layers in (b) is highlighted by
the colouring; layers are coloured red and magenta.

We close with examples of (7,3) nets. This topology, like those above, is
“incommensurate” with the symmetries of E3, and is therefore difficult to realize from
conventional Euclidean geometric approaches. First, consider in generality the vertex
density of (3,7) on the (4,6) tiling. From equations (3-4), it is clear that the (3,7) has two
2 vertices per 4-ring of the (4,6) tiling respectively. We choose two possible
configurations; (i) four (half) vertices, one on each edge of the 4-ring, and (ii) two
vertices within the 4-ring. Both can be extended symmetrically; the former with 2233
orbifold symmetry (Figures 9a, 9b) and the latter with 2223 orbifold symmetry (Figure
9d). The 2233 pattern contains two distinct 3-fold and 2-fold sites, most readily seen in
the coloured tiling of Figure 9a. In common with the previous examples, both 2233 and
2223 patterns contain significant geometric flexibility. Again, specific examples of both
are possible with (5,5) superposed on the regular {6,4} tiling (Figures 9c, 9e).
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(a)

        
(b)  (c)

             
(d) (e)
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Figure 9: (a) Superpositions of an irregular (6,4) net on the (3,7) tiling. The resulting
pattern has orbifold symmetry 2233. The pattern is coloured to reveal distinct 2-fold and
3-fold sites.
(b) The same tiling, with rotation centers within a single orbifold domain marked by dots
(of orders 2 and 3). Full arcs belong to the (3,7) tiling; dotted arcs are appended to
complete the (4,6) tiling. (Alternate (4) tiles are shaded for clarity.)
(c) The regular {6,4} tiling has a subgroup of symmetry 2233. (b) can therefore be
deformed to give (7,3) on {6,4}.
(d)Superposition of (3,7) on (6,4) with 2223 symmetry. Rotation centers within a single
orbifold domain are marked by dots. (Alternate (4) tiles are shaded for clarity.
(e) The regular {6,4} tiling has a subgroup of symmetry 2223. (d) can therefore be
deformed to give (7,3) on {6,4}.

  
(a)         (b)

Figure 10: (a,b) Projections of the 2233 pattern on the P and D surfaces respectively.

These patterns can be projected onto the P and D surfaces to give rather irregular (7,3)
nets. The irregularity is particularly evident in the projected (7,3) patterns with 2223
symmetry, where extreme crowding of adjacent edges is evident on both the P and D
projections (Figures 11a, 11c). Nevertheless, “relaxation” of the nets by relative vertex
motion in E3, to force a net with equal edge lengths and maximal E3 symmetry2 results in
a very uniform net with cubic symmetry (space group Fd3). (Detailed discussion of the
relaxation and symmetrisation process in E3 can be found elsewhere13.) The edges are
those of an array of regular icosahedra, interlinked in a diamond-like geometry by face-
sharing with regular octahedra2. This embedding is conjectured to be the lowest density
stable sphere packing2.

The 2223 orbifold has characteristic  
−1

6
 (index 4 and 14 relative to the *246 and *237

orbifolds respectively); the 2233 pattern has characteristic −
1

3
 (index 8 and 28 relative to

the *246 and *237 orbifolds respectively). The ratio of characteristics of the regular (3,7)

(*237) and *246 orbifolds is equal to 
84

24
, implying the possibility of a maximally
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symmetric common sub-group of index 2 relative to *246 and 7 relative to *237, with

characteristic 
−1

12
. Therefore, the possibility of a third, more symmetric (3,7) pattern on

{4,6} cannot be ruled out a priori, though we have not been able to identify it.

 
(a) (b)

    
(c) (d)

Figure 11: (a), (c) Projections of the 2223 pattern onto the P and D surfaces
respectively.
(b)Straightened version of (a), with fixed vertices (identical to those in (a)) and straight
edges.
(d) Relaxed version of (g), a known very low density stable sphere packing (single unit
cell displayed).

Conclusion:

Finally, we mention the possibility of mapping these hyperbolic patterns onto other three-
periodic minimal surfaces. The procedure is not limited to the simpler three-periodic
minimal surfaces. The atlas for the H surface, illustrated in Figures 2-3, allows
construction of reticulations of that surface. Similarly, higher genus surfaces, such as the
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I-WP surface can be handled. (Indeed, the orbifold defining the surface atlas of the I-WP
surface – *2424 – is readily related to that of the P and D surfaces.)

We intend to automatically generate networks in E3 with this technique. Given the
richness of hyperbolic tilings, we expect some novel structures to emerge. The examples
shown here demonstrate that possibility. The major challenge is likely to be the choice of
an optimal “basis set” likely to lead to the most regular nets in E3. We are faced with an
embarrassing wealth of possibilities, both in numbers of hyperbolic tilings and variety of
surfaces in E3 to reticulate. The examples presented here are based on the P and D
surfaces only. However, the variety of forms realised in those cases alone suggests that
we can choose a small set of surfaces to reticulate without compromising the variety of
resulting nets.

Appendix: Generation of hyperbolic patterns

The H2 tilings have been generated using the public domain software Funtiles written by
Daniel Huson14. The package relies on Delaney-Dress tiling symbols, described in detail
elsewhere by Huson and colleagues3,15,16,17.  The concept of these symbols is to encode
the tiling pattern and symmetry by decomposition of the (2D) tiling into simplices, whose
vertices lie on a face (2-vertex), edge (1-vertex) and vertex (0-vertex) of the original
tiling. (The restriction to 2D is ours only: the approach is immediately generalisable to
arbitrary dimensions.) Edges of the simplices are labeled by the index of the opposite
vertex in that simplex (0,1 or 2). Simplices are labeled according to the symmetry of the
pattern; symmetrically identical simplices carry identical labels. (Regular tilings have a
single simplex only, the least symmetric (n,z) tilings have at most 2n simplices and 2z
simplices per distinct face and edge respectively.) Involutions between adjacent
simplexes are characterized by the label of the common simplex edge: e.g. a simplex of
label A adjacent to one of label B, with common simplex edge 2 implies {A,B} lie within
the class of 2-involutions. The resulting encoding allows for an efficient tiling signature.
A related concept has been suggested to us by John Conway; we call it here the Conway
crankshaft (private communication). Let distinct simplices occupy distinct rows.
Involutions between distinct simplices by 0, 1 or 2-edges are coded by edges linking
those simplex entries in the 0, 1 or 2 column. The columns contain 0-1 and 1-2 pairs, in
order to collect face and vertex configurations of the original tiling respectively. The
topology of each face and vertex connectivity is appended by adding the relevant digit to
each component of the Conway crankshaft (face order, n and connectivity, z). The
presence of symmetry elements can be discerned by inspection from the crankshaft
topology, in common with the symmetry identification from Delaney-Dress symbols16.
For example, mirror lines lead to (open) chains in the crankshaft diagram, while rotation
centres lead to (closed) cycles. We list crankshaft diagrams for the H2 tilings below. (The
apparent reduced complexity of 0-1 and 1-2 cycles (faces and vertices respectively) is
induced by the ordering of simplices we have chosen; shuffling of row orders is possible,
provided the crankshat topology is unchanged.) These diagrams afford a concise
signature of the tilings, and possible combinatorics of the crankshaft diagram consistent
with the orders of n and z allow exhaustive listing of allowed tilings16.
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(a) (b)

                    
(c) (d)

Figure A1:Conway crankshaft diagrams for the (a) (5,4)+(6,4) tiling (symmetry *2224)
shown in Figure 5a, (b) (5,5)+(6,4) tiling of Fig.7a (symmetry 22*2), (c) (3,7)+(6,4)
tiling (symmetry 2233) of Figure 9b and (d) (3,7)+(6,4) tiling (symmetry 2323) in Fig.9d.



19

                                                
References:

1 Sadoc, J.F.; Mosseri, R.  Geometrical Frustration; Cambridge University Press;
Cambridge; 1999.
2 O’Keeffe, M.; Hyde, B.G. Crystal Structures 1. Patterns and Symmetry; (Appendix 3)
Mineralogical Society of America; Washington D.C.; 1996.
3 Friedrichs, O.D.; Dress, A.W.M.; Huson, D.H.; Klinowski  J.; Mackay, A.L.; Nature,
1999, 400, 644.
4 Andersson, S; Angew. Chem., 1983, 22, 69.
5 Mackay, A.L.; Proc. Roy. Soc. Lond. A, 1993, 442, 47.
6 Stillwell, J.; Geometry of Surfaces, Springer-Verlag; N.Y.;1992.
7 Fogden, A.; Hyde, S.T.; Acta Crystallogr A, 1992, 48, 442-451, 575-591.
8 Hyde, S.T.; Oguey, C.; Eur. Phys. J. B, 2000, 16, 613.
9 Sadoc, J.-F; Charvolin, J; Acta Cryst A 1989, 45, 10.
10 Conway, J.H In Groups, Combinatorics and Geometry London Mathematical Society
Lecture Notes; Cambridge University Press; Cambridge; 1992.
11 Hilbert, D.; Cohn-Vossen, S; Geometry and the Imagination; Chelsea Publishing
Company; N.Y.; 1952.
12 Hyde S.T; Ramsden, S. IN Chemical Topology. Applications and Techniques;
Mathematical Chemistry Series, volume 6; Bonchev, D; Rouvray D.H., Eds, Gordon and
Breach Science Publishers; Amsterdam, 2000.
13 Hyde, S.T; Ramsden, S; Di Matteo, T; Longdell, J; Solid State Sciences, in press
(2002).
14 <www.mathematik.uni-bielefeld.de/~huson/papers.html>
15 Huson, D.H.; Geometriae Dedicata 1993, 47, 269.
16 Balke, L.; Huson, D.H.; Geometriae Dedicata 1996, 60, 89.
17 Delgado Friedrichs, O; < www.mathematik.uni-bielefeld.de/~delgado/TCS/text.html>.


