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The 3-periodic nets of genus 3 (‘minimal nets’) are reviewed and their
symmetries re-examined. Although they are all crystallographic, seven of the 15
only have maximum-symmetry embeddings if some links are allowed to have
zero length. The connection between the minimal nets and the genus-3 zero-
mean-curvature surfaces (‘minimal minimal’ surfaces) is explored by deter-
mining the surface associated with a net that has a self-dual tiling. The fact that
there are only five such surfaces but 15 minimal nets is rationalized by showing
that all the minimal nets can serve as the labyrinth graph of one of the known
minimal minimal surfaces.

1. Introduction

The special periodic nets known as minimal nets and the
periodic surfaces known as minimal surfaces are of excep-
tional importance in the chemistry of crystalline materials. In
particular minimal surfaces occur in materials on a variety of
length scales and also play a key role in the systematic
enumeration of periodic nets. In this paper we review what is
known about them and derive some new properties that
emphasize the close relationship between nets and surfaces.

The term net is used here to refer to a periodic simple
connected graph. Minimal nets are those that have the
minimal number of vertices and edges in their repeat units.
More specifically, their quotient graphs (Chung et al., 1984)
have cyclomatic number, g, equal to d where d is the peri-
odicity of the net. In this paper we are concerned exclusively
with 3-periodic structures, so d = 3. It is elementary to show
that if the quotient graph has v vertices and e edges, then g = 1
+ e ! v. It is also well established that for g = 3 there are
exactly 15 minimal nets (Beukemann & Klee, 1992). In the
Reticular Chemistry Structure Resource (RCSR) database of
nets (O’Keeffe et al., 2008), g is identified as the genus of the
net.

A surface has two principal curvatures k1 and k2 that are the
maximum and minimum values. The mean curvature is (k1 +
k2)/2 and the Gaussian curvature is K = k1k2. 3-Periodic
minimal surfaces (TPMSs) are those for which the mean
curvature is everywhere zero. These may also be characterized
by genus. A useful measure of their topology is offered by the
genus of a volume of the surface, bounded by the primitive
translational unit cell of the oriented TPMS (defined by three
lattice vectors of the oriented surface whose two sides are
colored distinctly, so that isometrics of the surface do not swap

sides). This genus can be determined in a variety of ways
(Hyde, 1989; Fischer & Koch, 1989); it must again be at least 3
for 3-periodic nets (Meeks, 1977, 1990), so in what follows we
call TPMSs of genus 3 minimal minimal surfaces (MMSs).
Note that for a tiling of a surface in which the tiling has v
vertices, e edges and f faces (tiles) per repeat unit f ! e + v = 2
! 2g.

TPMSs play a central role in crystal chemistry and in
materials science. Among the many TPMSs that have been
explored in a mathematical context, it is clear that those of
genus 3 are most relevant to the science of materials. Their
enumeration is not entirely straightforward; at present five
distinct MMSs are recognized. Four of these were described in
the 19th century (Schwarz, 1890) but the fifth, the gyroid or G
surface, was not recognized until much later (Schoen, 1970,
2012). It has since been recognized that the gyroid is the most
prevalent minimal surface in nature, found in natural and
artificial materials, from chitin assemblies in butterfly wings, to
liquid crystal structures, to atomic assemblies in microporous
materials including mesoporous silicas (Hyde et al., 2008).
Unlike the P and D surfaces, the G surface contains neither
straight lines in the surface [which are coincident with twofold
axes of the (unoriented) TPMS] nor mirror planes. In the
language of minimal surface theory, it is a Bonnet inter-
mediate case, while the P and D examples are Bonnet end-
members. The P and D surfaces are also of some importance
in materials science (Han et al., 2011).

The known MMSs are called balance surfaces because they
divide space into two labyrinths that are either identical or (in
the case ofG) related as mirror images. The genus of the net of
the channels in the labyrinth (the labyrinth graph) is the same
as that of the surface (Fischer & Koch, 1989; Hyde, 1989);
accordingly the labyrinth graph must be one of the minimal
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nets. As there are 15 minimal nets, but only five known
minimal minimal surfaces, the question arises as to whether
there are other MMSs waiting discovery. Given the particular
relevance of these surfaces to materials science, especially in
mesoporous materials, it is disturbing to note that the catalog
of them remains possibly incomplete.

A flat point of a TPMS is a point where the Gaussian
curvature vanishes. The structure of the TPMS in the neigh-
borhood of these flat points determines the flat-point order, b.
The genus is related to the sum (over the unit cell) of flat-point
orders bi by g ¼ 1þ

P
i bi=4 (Hyde, 1989). Meeks (1977)

established that for all MMSs b = 1, so these simplest TPMSs
contain eight distinct isolated flat points.

The ‘shape’ of each genus-3 TPMS is governed locally by
the surface normal vectors at these eight flat points. For
example, the cubic P and D TPMSs contain eight flat points,
oriented towards the eight h111i directions. We note that,
despite their locally identical structures, these two TPMSs are
very different globally. Essentially, they differ in how their
surface patches are stitched together to form periodic struc-
tures in space. To see that, consider wrapping identical two-
dimensional 43.6 hyperbolic nets onto the P, G and D surfaces
(Fig. 1). All give crystalline nets; however, the nets wrap to
give distinct ‘collars’ around channels of these surfaces,
resulting in different three-dimensional net topologies, namely
rho (on the P), gie (on theG) and uks (on theD). The first two
of these describe the framework topologies of zeolites with
framework types RHO and BSV. We note that systematic
generation of 3-periodic nets by projection of hyperbolic
tilings onto 3-periodic Euclidean surfaces is the basis of the
EPINET project (Ramsden et al., 2009).

These minimal surfaces admit lower-symmetry variants;
indeed, Meeks (1977; see also Oguey, 1999) established that a
five-parameter family of deformations is allowed for a generic
(triclinic) genus-3 minimal surface. Explicit constructions of
some lower-symmetry MMSs, including (five-parameter)
triclinic genus-3 TPMSs, can be found in Fogden & Hyde
(1992). For example, the cubic P and D surfaces have a
common rhombohedral MMS, the so-called rPD surface. All
the Bonnet end-members admit symmetry-lowering defor-
mations that preserve the minimal surface geometry (Meeks,
1977). Rhombohedral and tetragonal variants of the G have
also been found (Fogden et al., 1993; Weyhaupt, 2008).

To summarize: the exploration of TPMSs that are Bonnet
end-members is largely complete. That search yields generic
triclinic TPMSs, capable of a (limited) range of deformations

of the triclinic lattice metric. All of these examples are
symmetry-reduced variations of the five most symmetric
genus-3 TPMSs, the P;D;CLP and H surfaces typical exam-
ples show hybrid character, such as the rPD surfaces, and the
(monoclinic)mPCLP surface (Fogden &Hyde, 1992, 1999). In
contrast, however, Bonnet intermediate surfaces such asG are
far less well understood (Weyhaupt, 2008). The completeness
or otherwise of the enumeration is one of the questions
addressed in this paper.

It proves valuable first to re-examine the symmetries of
embeddings of the minimal nets. This leads us to recognize an
important class of crystallographic nets in which certain nodes
coincide in a maximum-symmetry embedding.

2. Minimal nets and their embeddings

It is convenient to distinguish between abstract nets and their
Euclidean embeddings (Chung et al., 1984). Specifically the
vertices and edges of the graph correspond in this paper to
nodes and kinks in an embedding. One reason for doing this is
that we want to refer to the length of a link, whereas the
‘length’ of an edge has no meaning.

In an equilibrium (or barycentric) placement each vertex is
assigned coordinates that are the mean of the coordinates of
its neighbors. If the coordinates of one vertex are chosen (e.g.
as 0, 0, 0) those of the others are uniquely determined. This
provides a convenient identification of vertices and edges
that allows determination of symmetry (Delgado-Friedrich &
O’Keeffe, 2003), but a placement is not an embedding as no
metric is assigned. Nets for which, in an equilibrium place-
ment, the vertices have distinct coordinates have a combina-
torial symmetry group that is isomorphic with a space group
and have embeddings in that space group (Delgado-
Friedrichs, 2005). In what follows we refer to that space group
as ‘the symmetry of the net’.

Eight of the minimal nets have distinct barycentric coordi-
nates for all vertices and have been assigned RCSR symbols;
their embeddings, natural tilings and other properties have
been described (Bonneau et al., 2004). These eight fall into two
subgroups.

There are five ‘parent’ graphs with symbols pcu, dia, srs, cds,
hms. These are recognized as the labyrinth graphs of the
known MMSs P;D;G;CLP;H, respectively. In the embed-
dings of these nets, for the unit cell to have nonzero volume all
links must have nonzero edge length. There is a second set of
three, with symbols ths, tfa, tfc, that were not previously
associated with minimal surfaces. We note that for this set
some links can be made arbitrarily short or even of zero length
with finite unit-cell volume. We discuss the surfaces associated
with these three nets below.

Quotient graphs of the minimal nets are shown in Figs. 2
and 3 in a way that is meant to be suggestive. In the figures the
edges corresponding to links that must have nonzero length
are shown in black. The edges corresponding to links that can
be zero are shown in blue. Note that, if these edges are made
of zero ‘length’ and the vertices they join subsumed in one
vertex, we recover the parent graph.
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Figure 1
43.6 tilings of the P;G and D surfaces.
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There remain seven minimal nets, for which we use the
symbols assigned by Beukemann & Klee (1992), whose
quotient graphs have bridges (or cut edges). A bridge in a
graph is an edge that joins two otherwise disjoint parts. For
these graphs, pairs of vertices joined by bridges have the same
coordinates in an equilibrium placement. However, such
vertices can be distinguished in these cases as they have
different sets of edges and again a symmetry, isomorphic to a
space group, can be determined (Eon, 2007). However, the
only possible embeddings in that symmetry require the links
connecting nodes corresponding to vertices with identical
barycentric coordinates to have zero length. The edges
corresponding to these links are shown in red in Figs. 2 and 3.
The symmetries of these graphs (Table 1) appear not to have

been given explicitly before, and embeddings of these nets
have previously been given in subgroups that allow finite links
(Beukemann & Klee, 1992; Eon, 2011). These graphs are
derived from pcu, cds, hms and tfc and are shown in Figs. 4–6
with the ideally zero-length links shown as short black links. It
should be clear that when those links really are of zero length,
the remaining links form patterns identical1 to those of pcu,
tfc, cds and hms, and thus could also be considered as the
labyrinth graphs of the P;PCLP and H surfaces, respectively.
Eon (2011) has given the maximum possible symmetry for an
embedding with links of finite length. These are compared
with the full symmetry of the graph in Table 1.

Many, but not all, nets admit a tiling. By a tiling we mean a
division of space into finite generalized polyhedra or cages
that are topological spheres and which fill space when packed
together face-to face. In a dual tiling new vertices are placed in
the center of the original tiles and joined by new edges that
pass through the faces of the original tiles. Noting that the dual
of the dual is the original tiling completes the definition. A
proper tiling of a net is one for which the symmetry of the
tiling is the same as the symmetry of the net.

For the ‘parent’ nets that are identified above as the
labyrinth graphs of the known MMSs, there is a unique proper
tiling that has the property of being self-dual. The other three
nets without collisions (i.e. without vertices with identical
barycentric coordinates, ths, tfa, tfc) have two proper tilings; in
each case one of them is self-dual.2 In x3 we show how tilings
derived from these self-dual tilings illustrate the surface for
which these nets are labyrinth graphs. The two nets, of the
tiling and the dual, are related by symmetry so the assembly of
two (denoted by -c in the RCSR) has a higher symmetry. The
symmetries of a single net and the pairs of nets are listed in
Table 2.
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Figure 3
The nine quotient graphs of minimal nets not shown in Fig. 2. Bridges are
shown in red. Blue edges correspond to links that can have zero length
(see text). Each box contains a ‘parent’ graph and its derived graphs.
Symbols other than three-letter RCSR symbols are those of Beukemann
& Klee (1992).

Table 1
The symmetry of the minimal nets with collisions.

The shape symmetry is the symmetry of the pattern of finite links in a
maximum-symmetry embedding. In parentheses is the surface with which this
shape corresponds to the labyrinth graph. The maximum symmetry is the
graph symmetry. The finite-link symmetry is the maximum symmetry for an
embedding with finite link length as reported by Eon (2011).

Net Shape symmetry
Maximum
symmetry

Finite-link
symmetry

4(3)4 Pm!33m ðPÞ Pm!33m R32
3(32,4)4 Pm!33m ðPÞ Pmmm C2
2(3,5)2 Pm!33m ðPÞ P4/mmm Cmm2
4(3)5 P42/mmc (CLP) P42/mmc Ama2
3(32,4)5 P42/mmc (CLP) Pmmm Pmm2
4(3)3 Cmmm (P) Cmmm Cmm2
3(32,4)2 P!66m2 ðHÞ P!66m2 Cmm2

Figure 2
Five quotient graphs of minimal nets ‘derived’ from pcu. Bridges are
shown in red. Blue edges correspond to links that can have zero length
(see text). Symbols other than three-letter RCSR symbols are those of
Beukemann & Klee (1992).

1 Grünbaum (2003) has suggested the term isomeghethic for structures with
the same pattern of nodes and links.
2 For nets with more than one proper tiling, rules have been devised to
determine a unique natural tiling (Delgado-Friedrichs et al., 2003; Blatov et al.,
2007). One rule is that in a natural tiling no tile should have one face larger
than the rest. The self-dual tilings for tfc and ths violate this rule. The natural
tiling for tfa is self-dual. This last statement corrects an error in Bonneau et al.
(2004).
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We have not found tilings for the seven minimal nets with
collisions, but we note that the absence of a tiling can be
difficult to prove.

3. Surfaces associated with nets

Since the work of Schoen (1970), the relation between TPMSs
and 3-periodic nets has been recognized. Schoen described the
P;D and G surfaces in terms of their ‘skeletal nets’, what we
now call ‘labyrinth graphs’, which follow the channels of these
surfaces. These graphs are the genus-3 pcu (P), dia (D) and srs
(G) nets. Two more minimal nets describe the non-cubic
Bonnet end-members [hms (H) and cds (CLP)].

It should be recognized, however, that the concept of a
labyrinth graph, while almost self-evident for the most

symmetric TPMS, is murky at best for the lower-symmetry
variants, though it can be made rigorous with some effort
(Schröder et al., 2003).

We can ask the inverse question: what is the surface asso-
ciated with a given net? If we consider nodes of an embedding
as small balls and links as small cylinders, it is clear that the
surface of this assembly is a periodic surface unique to the net.
But if one asks what is the balance surface separating two
identical nets such as those of a tiling and its dual for a net with
self-dual tiling the answer is less clear. A strategy to suggest an
answer is as follows.

In the Dress approach (Dress, 1984) to describing tilings in
terms of extended Schläfli symbols (Delaney–Dress symbols,
or D symbols), a tile is divided into simplicial chambers. In the
three-dimensional case the vertices of the tetrahedral cham-
bers are the center of a tile, the center of a face of that tile, the
center of an edge of that face and a vertex of that edge. Fig. 7
shows such a division of the proper tile for the diamond net
(dia). Consider now this space filling of tetrahedra as a tiling –
the dual tiling will have vertices on a surface intermediate
between the original net (in this case dia) and its dual.
Furthermore that surface will be tiled by a four-valent tiling –
in fact by quadrangles and larger polygons that form a net that
we call the -t net, in this example dia-t (also known to the
RCSR as fuf). The three-dimensional tiling of the -t net has
two kinds of tile – tiles, with two large faces, that are topolo-
gical prisms, and that correspond to edges of the original net,
and tiles, with z large faces, corresponding to z-coordinated
vertices of the original net.

Recall that for a tiling of a surface of genus g with v vertices,
e edges and f faces (tiles), v ! e + f = 2 ! 2g. For a four-valent
tiling with fi i-sided tiles, e = 2v and e =

P
(i/2)fi. From this we
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Figure 6
Embeddings of the minimal nets with collisions derived from hms and tfc.
The link shown in black has zero length for a full symmetry (given at the
bottom of the figure) embedding. Symbols as in Fig. 3.

Figure 5
Embeddings of the minimal nets with collisions derived from cds. The link
shown in black has zero length for a full symmetry (given at the bottom of
the figure) embedding. Symbols as in Fig. 3.

Figure 4
Embeddings of the minimal nets with collisions derived from pcu. The
link shown in black has zero length for a full symmetry (given at the
bottom of the figure) embedding. Symbols as in Fig. 2.

Table 2
Symmetries of the minimal nets without collisions and of an interpene-
trating pair of those nets.

Net (surface) Single net Pair of nets

pcu (P) Pm!33m Im!33m
srs (G) I4132 Ia!33d
dia (D) Fd!33m Pn!33m
cds (CLP) P42/mmc P42/mcm
hms (H) P!66m2 P63/mmc
ths I41/amd P42/nnm
tfa I !44m2 I41/amd
tfc Cmmm Fmmm
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find that
P

(i! 4)fi = 8g! 8. Note that f4 is unconstrained. For
an MMS with g = 3 and quadrangular and hexagonal tiles, f6 =
8. In fact for the -t tiling of those nets that are the labyrinth
graphs of the genus-3 minimal surfaces the centers of the
hexagons correspond to the flat points of that surface (see
Figs. 8–10).

Fig. 8 shows part of a tiling for the tfc-t net. Note how
the tiles for a 4-coordinated and two 3-coordinated vertices
together with the tiles for their common edges merge to make
a tile for a 6-coordinated vertex. The 6-coordinated assemblies
then combine to form a surface with the same shape as the P
surface. This means that the tfa net could serve as the labyr-
inth graph of the P surface as well as the pcu net. Thus the
relation of nets to surfaces is many to one, as already indicated
by Schröder et al. (2003). Fig. 9 shows how the tiles for tfa-t
and ths-t similarly combine to give a surface that has the
labyrinths of the D surface.

Fig. 10 shows the tiling for srs-t. This illustrates a tiling of
the G surface and is shown compared with a proper tile of the
srs net. It also illustrates that the surface is an inflated version
of the net.

What of other tilings of minimal nets? Recall that the genus
of a net is given by 1 + e ! v. For a tiling of three-dimensional
Euclidean space with t tiles per repeat unit v ! e = t ! f
(Coxeter, 1973). But t ! f is equal to v ! e for the dual tiling.

Accordingly, the net of a dual of a tiling of a minimal net is
another minimal net. Indeed, Bonneau et al. (2004) showed
that there were 12 distinct ways3 of dissecting a cube into
smaller tiles and that all these tilings have duals which were
tilings of one of the other minimal nets without collisions.
However, there is a powerful theorem, valid only for genus-3
TPMSs, or MMSs. Meeks (1977) has proven that all flat points
on MMSs are centers of inversion symmetry for the structure.
This implies, in particular, that the labyrinths of such surfaces
are related to each other via inversion symmetry; therefore
their labyrinth graphs are necessarily congruent or related as
mirror images and thus identical topologically. Accordingly
the -t tilings, derived in turn from self-dual tilings, that we have
described are the only cases to be considered.

We have now shown that all of the 15 minimal nets can serve
as the labyrinth graph of one of the five knownMMSs, and this
was one of our main goals: to show that there are not neces-
sarily any yet undiscovered MMSs despite the larger number
of minimal nets than known MMSs. In x4 we bolster this
observation by more quantitative examination of the optimal
surfaces separating pairs of identical minimal nets.

For higher-genus nets that do not have proper self-dual
tilings one still generates an intermediate surface that may be
a minimal surface. We illustrate this (Fig. 11) for the pair of
nets bcu (the 8-coordinated net of the body-centered cubic
lattice) and the 4-coordinated nbo net whose unique proper
tilings are duals. The net illustrates bcu-t (necessarily the same,
because of the duality, as nbo-t) that is a tiling of the inter-
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Figure 7
Left, a tile of the dia net. Right, the same divided into chambers.

Figure 9
Tilings of the -t nets of pcu and dia and the three minimal nets not
previously identified as labyrinth graphs of triply periodic surfaces. Note
that pcu-t is the same as rho (Fig. 1).

Figure 8
Left, tiles of the -t net for tfc. Right, an assembly of such tiles. Note how
the tile (yellow) with four large faces and the two tiles with three large
faces (orange) combine with two edge tiles (red) to form a larger tile with
four orange and two yellow large faces. These are then linked by green
edge tiles into a structure that is a slight distortion of the cubic P surface.

Figure 10
Left, a proper tile of the srs net. Right, part of the srs-t structure – a tiling
of the G surface. See also Fig. 12.

3 These correspond to the 12 distinct spanning trees that are subgraphs of the
minimal net quotient graphs (Bonneau et al., 2004).
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mediate surface by quadrangles and octagons. The surface
itself is the well known I-WP minimal surface. Note that the
inversion centers in this structure are at the nodes of the
labyrinth graphs, in contrast to the case for genus 3.

4. Evolver experiments

The resemblance of the ‘-t’ tilings above to genus-3 minimal
triply periodic minimal surfaces is striking, though qualitative
only. Can this be better quantified? A dual net pair can be
used more directly to form approximations to TPMSs as
follows. First, form Voronoi cells around each node of the
embedded net combined with the net of its dual tiling. By
construction, the interior of each cell is closer to the single
internal net node than to any other node of the net pair. Next,
remove any faces that are pierced by net links. The resulting
structure is a topological sponge, with two open channels,
made of planar faces. (It is often more convenient, and affords
more rapid convergence, to place centers at the midpoints of
the edges, generating a more finely facetted sponge.) Lastly,
relax this facetted sponge to minimal surface area. In what
follows we describe results obtained using the Surface Evolver
program of Brakke (http://www.susqu.edu/brakke/evolver/),
without changing the unit-cell shape or the topology of the
sponge, to minimize the mean curvature of the surface. The
resulting smooth surface then approximates a periodic
minimal surface. We illustrate this procedure for a pair of dual
srs nets in Fig. 12. We can compare the evolved surface to an
exact embedding of the G surface and there is no doubt that

the solution converges to the gyroid TPMS. This is confirmed
by plotting both surfaces together; provided a reasonable
number of polygons are chosen in both cases they rapidly
merge into a single surface, proving their equivalence with the
numerical accuracy of the Evolver process.

A similar procedure for the dia, pcu, hms and cds nets (Fig.
13) results in evolved surfaces that contain straight lines lying
in the surfaces. Those straight lines coincide with axes of
twofold symmetry that exchange the (self-)dual net pair so are
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Figure 11
Two views of a tiling of the I-WP surface. The two periodic structures
depicted combine to fill space. The 3-periodic nets bcu-t and nbo-t are
identical.

Figure 12
Left: the facetted sponge formed from Voronoi domains for a pair of (red
and green) dual srs nets and (center) the relaxed surface generated by
Surface Evolver. This surface is indistinguishable from the G minimal
minimal surface shown on the right.

Figure 13
The facetted sponges (left) and the surfaces generated by Surface Evolver
(right) for four ‘parent’ graphs.

Figure 14
The facetted sponges (right) and the surfaces generated by the Evolver
(right) for the nets tfa, tfc, and ths.
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necessarily present in the relaxed Voronoi cells. In all these
cases except hms, the straight lines form closed skew polygons
(with four, four and six sides, respectively). These polygons are
precisely those found in the simpler genus-3 minimal surfaces
and are signatures of those surfaces (see, for example, Fischer
& Koch, 1987; Koch & Fischer, 1988). The hms example gives
a stack of parallel hcb net layers. This skeleton defines the
lines in the genus-3Hminimal surface (Koch & Fischer, 1988).

Similarly, the Evolver procedure applied to the nets tfa, ths
and tfc (Fig. 14) generates surfaces with hyperbolic patches
bounded by straight lines that can be used to identify the
surface uniquely. The first pair of cases yields the skew
pentagon characteristic of a tetragonal deformation of the D
surface, the genus-3 tD surface (Fogden & Hyde, 1992).4

Clearly, then, all the collision-free minimal nets yield known
MMSs. The remaining eight graphs with collisions in their
maximum-symmetry forms are likewise labyrinth graphs of
the five known MMSs and all 15 minimal nets are accounted
for.

MO’K is supported by the World Class University program
(R-31-2008-000-10055-0) and by the US National Science
Foundation, grant No. DMR 1104798.
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4 The sponge formed from the tfa net pair relaxes in Evolver to a surface with
patches bounded by lines that are not the full complement of those formed in
the tD surface. However, a simple argument proves that the surface with the
full complement of lines must have a smaller area than that we repeatedly
obtain numerically. The tfc net pair gives a relaxed surface whose patches are
identical to those of an orthorhombic distortion of the P surface, namely the
oPb surface (Fogden & Hyde, 1992).
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